Publications

by Keyword: Muscle


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Estrada-Petrocelli, L., Torres, A., Sarlabous, L., Rafols-de-Urquia, M., Ye-Lin, Y., Prats-Boluda, G., Jané, R., Garcia-Casado, J., (2020). Evaluation of respiratory muscle activity by means of concentric ring electrodes IEEE Transactions on Biomedical Engineering Early publication

Surface electromyography (sEMG) can be used for the evaluation of respiratory muscle activity. Recording sEMG involves the use of surface electrodes in a bipolar configuration. However, electrocardiographic (ECG) interference and electrode orientation represent considerable drawbacks to bipolar acquisition. As an alternative, concentric ring electrodes (CREs) can be used for sEMG acquisition and offer great potential for the evaluation of respiratory muscle activity due to their enhanced spatial resolution and simple placement protocol, which does not depend on muscle fiber orientation. The aim of this work was to analyze the performance of CREs during respiratory sEMG acquisitions. Respiratory muscle sEMG was applied to the diaphragm and sternocleidomastoid muscles using a bipolar and a CRE configuration. Thirty-two subjects underwent four inspiratory load spontaneous breathing tests which was repeated after interchanging the electrode positions. We calculated parameters such as (1) spectral power and (2) median frequency during inspiration, and power ratios of inspiratory sEMG without ECG in relation to (3) basal sEMG without ECG ( Rins/noise ), (4) basal sEMG with ECG ( Rins/cardio ) and (5) expiratory sEMG without ECG ( Rins/exp ). Spectral power, R_ins/noise} and Rins/cardio increased with the inspiratory load. Significantly higher values (p<0.05) of Rins/cardio and significantly higher median frequencies were obtained for CREs. Rins/noise and Rins/exp were higher for the bipolar configuration only in diaphragm sEMG recordings, whereas no significant differences were found in the sternocleidomastoid recordings. Our results suggest that the evaluation of respiratory muscle activity by means of sEMG can benefit from the remarkably reduced influence of cardiac activity, the enhanced detection of the shift in frequency content and the axial isotropy of CREs which facilitates its placement.

Keywords: Concentric ring electrodes, Laplacian potential, Non-invasive respiratory monitoring, Respiratory muscles, Surface electromyography


Castillo-Escario, Y., Rodríguez-Cañón, M., García-Alías, G., Jané, R., (2020). Identifying muscle synergies from reaching and grasping movements in rats IEEE Access 8, 62517-62530

Reaching and grasping (R&G) is a skilled voluntary movement which is critical for animals. In this work, we aim to identify muscle synergy patterns from R&G movements in rats and show how these patterns can be used to characterize such movements and investigate their consistency and repeatability. For that purpose, we analyzed the electromyographic (EMG) activity of five forelimb muscles recorded while the animals were engaged in R&G tasks. Our dataset included 200 R&G attempts from three different rats. Non-negative matrix factorization was used to decompose EMG signals and extract muscle synergies. We compared all pairs of attempts and created cross-validated models to study intra- and inter-subject variability. We found that three synergies were enough to accurately reconstruct the EMG envelopes. These muscle synergies and their corresponding activation coefficients were very similar for all the attempts in the database, providing a general pattern to describe the movement. Results suggested that the movement strategy adopted by an individual in its different attempts was highly repetitive, but also resembled the strategies adopted by the other animals. Inter-subject variability was not much higher than intra-subject variability. This study is a proof-of-concept, but the proposed approaches can help to establish whether there is a stereotyped pattern of neuromuscular activity in R&G movement in healthy rats, and the changes that occur in animal models of acute neurological injuries. Research on muscle synergies could elucidate motor control mechanisms, and lead to quantitative tools for evaluating upper limb motor impairment after an injury.

Keywords: Electromyography, Motor control, Muscle synergies, Reaching and grasping, Upper limb


Estrada-Petrocelli, L., Jané, R., Torres, A., (2020). Neural respiratory drive estimation in respiratory sEMG with cardiac arrhythmias Engineering in Medicine & Biology Society (EMBC) 42nd Annual International Conference of the IEEE , IEEE (Montreal, Canada) , 2748-2751

Neural respiratory drive as measured by the electromyography allows the study of the imbalance between the load on respiratory muscles and its capacity. Surface respiratory electromyography (sEMG) is a non-invasive tool used for indirectly assessment of NRD. It also provides a way to evaluate the level and pattern of respiratory muscle activation. The prevalence of electrocardiographic activity (ECG) in respiratory sEMG signals hinders its proper evaluation. Moreover, the occurrence of abnormal heartbeats or cardiac arrhythmias in respiratory sEMG measures can make even more challenging the NRD estimation. Respiratory sEMG can be evaluated using the fixed sample entropy (fSampEn), a technique which is less affected by cardiac artefacts. The aim of this work was to investigate the performance of the fSampEn, the root mean square (RMS) and the average rectified value (ARV) on respiratory sEMG signals with supraventricular arrhythmias (SVA) for NRD estimation. fSampEn, ARV and RMS parameters increased as the inspiratory load increased during the test. fSampEn was less influenced by ECG with SVAs for the NRD estimation showing a greater response to respiratory sEMG, reflected with a higher percentage increase with increasing load (228 % total increase, compared to 142 % and 135 % for ARV and RMS, respectively).

Keywords: Electrocardiography, Muscles, Electrodes, Estimation, Band-pass filters, Electromyography, Heart beat


Hernández-Albors, Alejandro, Castaño, Albert G., Fernández-Garibay, Xiomara, Ortega, María Alejandra, Balaguer, Jordina, Ramón-Azcón, Javier, (2019). Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines Biosensors and Bioelectronics: X 2, 100025

Understanding the protein-secretion dynamics from single, specific tissues is critical toward the advancement of disease detection and treatments. However, such secretion dynamics remain difficult to measure in vivo due to the uncontrolled contributions from other tissue populations. Here, we describe an integrated platform designed for the reliable, near real-time measurements of cytokines secreted from an in vitro single-tissue model. In our setup, we grow 3D biomimetic tissues to discretize cytokine source, and we separate them from a magnetic microbead-based biosensing system using a Transwell insert. This design integrates physiochemically controlled biological activity, high-sensitivity protein detection (LOD < 20 pg mL−1), and rapid protein diffusion to enable non-invasive, near real-time measurements. To showcase the specificity and sensitivity of the system, we use our setup to probe the inflammatory process related to the protein Interleukine 6 (IL-6) and to the Tumor Necrosis Factor (TNF-α). We show that our setup can monitor the time-dependence profile of IL-6 and TNF-α secretion that results from the electrical and chemical stimulation of 3D skeletal muscle tissues. We demonstrate a novel and affordable methodology for discretizing the secretion kinetics of specific tissues for advancing metabolic-disorder studies and drug-screening applications.

Keywords: Microphysiological tissues, Tissue engineering, Electrochemical, biosensors, Magnetic particles, Skeletal muscle, Electric stimulation


Molina, B. G., Cuesta, S., Besharatloo, H., Roa, J. J., Armelin, E., Alemán, C., (2019). Free-standing taradaic motors based on biocompatible nanoperforated poly(lactic acid) layers and electropolymerized poly(3,4-ethylenedioxythiophene) ACS Applied Materials and Interfaces 11, (32), 29427-29435

The electro-chemo-mechanical response of robust and flexible free-standing films made of three nanoperforated poly(lactic acid) (pPLA) layers separated by two anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layers has been demonstrated. The mechanical and electrochemical properties of these films, which are provided by pPLA and PEDOT, respectively, have been studied by nanoindentation, cyclic voltammetry, and galvanostatic charge-discharge assays. The unprecedented combination of properties obtained for this system is appropriated for its utilization as a Faradaic motor, also named artificial muscle. Application of square potential waves has shown important bending movements in the films, which can be repeated for more than 500 cycles without damaging its mechanical integrity. Furthermore, the actuator is able to push a huge amount of mass, as it has been proved by increasing the mass of the passive pPLA up to 328% while keeping the mass of electroactive PEDOT unaltered.

Keywords: Actuator, Artificial muscle, Conducting polymer, Nanoindentation


Lozano-García, M., Estrada-Petrocelli, L., Moxham, J., Rafferty, G. F., Torres, A., Jolley, C. J., Jané, R. , (2019). Noninvasive assessment of inspiratory muscle neuromechanical coupling during inspiratory threshold loading IEEE Access 7, 183634-183646

Diaphragm neuromechanical coupling (NMC), which reflects the efficiency of conversion of neural activation to transdiaphragmatic pressure (Pdi), is increasingly recognized to be a useful clinical index of diaphragm function and respiratory mechanics in neuromuscular weakness and cardiorespiratory disease. However, the current gold standard assessment of diaphragm NMC requires invasive measurements of Pdi and crural diaphragm electromyography (oesEMGdi), which complicates the measurement of diaphragm NMC in clinical practice. This is the first study to compare invasive measurements of diaphragm NMC (iNMC) using the relationship between Pdi and oesEMGdi, with noninvasive assessment of NMC (nNMC) using surface mechanomyography (sMMGlic) and electromyography (sEMGlic) of lower chest wall inspiratory muscles. Both invasive and noninvasive measurements were recorded in twelve healthy adult subjects during an inspiratory threshold loading protocol. A linear relationship between noninvasive sMMGlic and sEMGlic measurements was found, resulting in little change in nNMC with increasing inspiratory load. By contrast, a curvilinear relationship between invasive Pdi and oesEMGdi measurements was observed, such that there was a progressive increase in iNMC with increasing inspiratory threshold load. Progressive recruitment of lower ribcage muscles, serving to enhance the mechanical advantage of the diaphragm, may explain the more linear relationship between sMMGlic and sEMGlic (both representing lower intercostal plus costal diaphragm activity) than between Pdi and crural oesEMGdi. Noninvasive indices of NMC derived from sEMGlic and sMMGlic may prove to be useful indices of lower chest wall inspiratory muscle NMC, particularly in settings that do not have access to invasive measures of diaphragm function.

Keywords: Cardiovascular system, Diaphragms, Diseases, Electromyography, Medical signal processing, Neurophysiology, Patient monitoring, Pneumodynamics, Inspiratory muscle neuromechanical coupling, Diaphragm neuromechanical coupling, Neural activation, Transdiaphragmatic pressure, Diaphragm function, Respiratory mechanics, Diaphragm NMC, Invasive measurements, Crural diaphragm electromyography, iNMC, Noninvasive assessment, nNMC, Lower chest wall inspiratory muscles, Inspiratory threshold loading protocol, Noninvasive sMMGlic measurements, sEMGlic measurements, oesEMGdi measurements, Inspiratory threshold load, Lower ribcage muscles, Lower intercostal plus costal diaphragm activity, Crural oesEMGdi, Noninvasive indices, sEMGlic sMMGlic, Lower chest wall inspiratory muscle NMC, Surface mechanomyography, Electromyography, Inspiratory threshold loading, Mechanomyography, Neuromechanical coupling, Respiratory muscles


Lozano-García, M., Estrada, L., Jané, R., (2019). Performance evaluation of fixed sample entropy in myographic signals for inspiratory muscle activity estimation Entropy 21, (2), 183

Fixed sample entropy (fSampEn) has been successfully applied to myographic signals for inspiratory muscle activity estimation, attenuating interference from cardiac activity. However, several values have been suggested for fSampEn parameters depending on the application, and there is no consensus standard for optimum values. This study aimed to perform a thorough evaluation of the performance of the most relevant fSampEn parameters in myographic respiratory signals, and to propose, for the first time, a set of optimal general fSampEn parameters for a proper estimation of inspiratory muscle activity. Different combinations of fSampEn parameters were used to calculate fSampEn in both non-invasive and the gold standard invasive myographic respiratory signals. All signals were recorded in a heterogeneous population of healthy subjects and chronic obstructive pulmonary disease patients during loaded breathing, thus allowing the performance of fSampEn to be evaluated for a variety of inspiratory muscle activation levels. The performance of fSampEn was assessed by means of the cross-covariance of fSampEn time-series and both mouth and transdiaphragmatic pressures generated by inspiratory muscles. A set of optimal general fSampEn parameters was proposed, allowing fSampEn of different subjects to be compared and contributing to improving the assessment of inspiratory muscle activity in health and disease.

Keywords: Electromyography, Fixed sample entropy, Mechanomyography, Non-invasive physiological measurements, Oesophageal electromyography, Respiratory muscle


Mestre, R., Patiño, T., Guix, M., Barceló, X., Sánchez, S., (2019). Design, optimization and characterization of bio-hybrid actuators based on 3D-bioprinted skeletal muscle tissue Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019 (Lecture Notes in Computer Science) , Springer International Publishing (Nara, Japan) 11556, 205-215

The field of bio-hybrid robotics aims at the integration of biological components with artificial materials in order to take advantage of many unique features occurring in nature, such as adaptability, self-healing or resilience. In particular, skeletal muscle tissue has been used to fabricate bio-actuators or bio-robots that can perform simple actions. In this paper, we present 3D bioprinting as a versatile technique to develop these kinds of actuators and we focus on the importance of optimizing the designs and properly characterizing their performance. For that, we introduce a method to calculate the force generated by the bio-actuators based on the deflection of two posts included in the bio-actuator design by means of image processing algorithms. Finally, we present some results related to the adaptation, controllability and force modulation of our bio-actuators, paving the way towards a design- and optimization-driven development of more complex 3D-bioprinted bio-actuators.

Keywords: 3D bioprinting, Bio-hybrid robotics, Muscle-based bio-actuators


Estrada, L., Sarlabous, L., Lozano-García, M., Jané, R., Torres, A., (2019). Neural offset time evaluation in surface respiratory signals during controlled respiration Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 2344-2347

The electrical activity of the diaphragm measured by surface electromyography (sEMGdi) provides indirect information on neural respiratory drive. Moreover, it allows evaluating the ventilatory pattern from the onset and offset (ntoff) estimation of the neural inspiratory time. sEMGdi amplitude variation was quantified using the fixed sample entropy (fSampEn), a less sensitive method to the interference from cardiac activity. The detection of the ntoff is controversial, since it is located in an intermediate point between the maximum value and the cessation of sEMGdi inspiratory activity, evaluated by the fSampEn. In this work ntoff detection has been analyzed using thresholds between 40% and 100 % of the fSampEn peak. Furthermore, fSampEn was evaluated analyzing the r parameter from 0.05 to 0.6, using a m equal to 1 and a sliding window size equal to 250 ms. The ntoff has been compared to the offset time (toff) obtained from the airflow during a controlled respiratory protocol varying the fractional inspiratory time from 0.54 to 0.18 whilst the respiratory rate was constant at 16 bpm. Results show that the optimal threshold values were between 66.0 % to 77.0 % of the fSampEn peak value. r values between 0.25 to 0.50 were found suitable to be used with the fSampEn.

Keywords: Protocols, Low pass filters, Electrodes, Standards, Band-pass filters, Muscles, Cutoff frequency


Castillo-Escario, Y., Rodríguez-Cañón, M., García-Alías, G., Jané, R., (2019). Onset detection to study muscle activity in reaching and grasping movements in rats Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 5113-5116

EMG signals reflect the neuromuscular activation patterns related to the execution of a certain movement or task. In this work, we focus on reaching and grasping (R&G) movements in rats. Our objective is to develop an automatic algorithm to detect the onsets and offsets of muscle activity and use it to study muscle latencies in R&G maneuvers. We had a dataset of intramuscular EMG signals containing 51 R&G attempts from 2 different animals. Simultaneous video recordings were used for segmentation and comparison. We developed an automatic onset/offset detector based on the ratio of local maxima of Teager-Kaiser Energy (TKE). Then, we applied it to compute muscle latencies and other features related to the muscle activation pattern during R&G cycles. The automatic onsets that we found were consistent with visual inspection and video labels. Despite the variability between attempts and animals, the two rats shared a sequential pattern of muscle activations. Statistical tests confirmed the differences between the latencies of the studied muscles during R&G tasks. This work provides an automatic tool to detect EMG onsets and offsets and conducts a preliminary characterization of muscle activation during R&G movements in rats. This kind of approaches and data processing algorithms can facilitate the studies on upper limb motor control and motor impairment after spinal cord injury or stroke.

Keywords: Muscles, Electromyography, Rats, Low pass filters, Microsoft Windows, Band-pass filters


Mohammadi, M. H., Obregón, R., Ahadian, S., Ramón-Azcón, J., Radisic, M., (2017). Engineered muscle tissues for disease modeling and drug screening applications Current Pharmaceutical Design , 23, (20), 2991-3004

Animal models have been the main resources for drug discovery and prediction of drugs’ pharmacokinetic responses in the body. However, noticeable drawbacks associated with animal models include high cost, low reproducibility, low physiological similarity to humans, and ethical problems. Engineered tissue models have recently emerged as an alternative or substitute for animal models in drug discovery and testing and disease modeling. In this review, we focus on skeletal muscle and cardiac muscle tissues by first describing their characterization and physiology. Major fabrication technologies (i.e., electrospinning, bioprinting, dielectrophoresis, textile technology, and microfluidics) to make functional muscle tissues are then described. Finally, currently used muscle tissue models in drug screening are reviewed and discussed.

Keywords: Cardiac muscle, Drug screening, Engineering muscle, Human pharmacological response, Physiological similarity, Skeletal muscle


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2016). Improvement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy IEEE Journal of Biomedical and Health Informatics 20, (2), 476-485

Diaphragm electromyography is a valuable technique for the recording of electrical activity of the diaphragm. The analysis of diaphragm electromyographic (EMGdi) signal amplitude is an alternative approach for the quantification of neural respiratory drive (NRD). The EMGdi signal is, however, corrupted by electrocardiographic (ECG) activity, and this presence of cardiac activity can make the EMGdi interpretation more difficult. Traditionally, the EMGdi amplitude has been estimated using the average rectified value (ARV) and the root mean square (RMS). In this work, surface EMGdi signals were analyzed using the fixed sample entropy (fSampEn) algorithm, and compared to traditional ARV and RMS methods. The fSampEn is calculated using a tolerance value fixed and independent of the standard deviation of the analysis window. Thus, this method quantifies the amplitude of the complex components of stochastic signals (such as EMGdi), and being less affected by changes in amplitude due to less complex components (such as ECG). The proposed method was tested in synthetic and recorded EMGdi signals. fSampEn was less sensitive to the effect of cardiac activity on EMGdi signals with different levels of NRD than ARV and RMS amplitude parameters. The mean and standard deviation of the Pearson’s correlation values between inspiratory mouth pressure (an indirect measure of the respiratory muscle activity) and fSampEn, ARV and RMS parameters, estimated in the recorded EMGdi signal at tidal volume (without inspiratory load), were 0.38???0.12, 0.27???0.11 and 0.11???0.13, respectively. Whereas at 33 cmH2O (maximum inspiratory load) were 0.83???0.02, 0.76???0.07 and 0.61???0.19, respectively. Our findings suggest that the proposed method may improve the evaluation of NRD.

Keywords: Electromyography, diaphragm muscle, neural respiratory drive


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2016). Evaluating respiratory muscle activity using a wireless sensor platform Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 5769-5772

Wireless sensors are an emerging technology that allows to assist physicians in the monitoring of patients health status. This approach can be used for the non-invasive recording of the electrical respiratory muscle activity of the diaphragm (EMGdi). In this work, we acquired the EMGdi signal of a healthy subject performing an inspiratory load test. To this end, the EMGdi activity was captured from a single channel of electromyography using a wireless platform which was compared with the EMGdi and the inspiratory mouth pressure (Pmouth) recorded with a conventional lab equipment. From the EMGdi signal we were able to evaluate the neural respiratory drive, a biomarker used for assessing the respiratory muscle function. In addition, we evaluated the breathing movement and the cardiac activity, estimating two cardio-respiratory parameters: the respiratory rate and the heart rate. The correlation between the two EMGdi signals and the Pmouth improved with increasing the respiratory load (Pearson's correlation coefficient ranges from 0.33 to 0.85). The neural respiratory drive estimated from both EMGdi signals showed a positive trend with an increase of the inspiratory load and being higher in the conventional EMGdi recording. The respiratory rate comparison between measurements revealed similar values of around 16 breaths per minute. The heart rate comparison showed a root mean error of less than 0.2 beats per minute which increased when incrementing the inspiratory load. In summary, this preliminary work explores the use of wireless devices to record the muscle respiratory activity to derive several physiological parameters. Its use can be an alternative to conventional measuring systems with the advantage of being portable, lightweight, flexible and operating at low energy. This technology can be attractive for medical staff and may have a positive impact in the way healthcare is being delivered.

Keywords: Biomedical monitoring, Electrodes, Medical services, Monitoring, Muscles, Wireless communication, Wireless sensor networks


Estrada, L., Torres, A., Garcia-Casado, J., Sarlabous, L., Prats-Boluda, G., Jané, R., (2016). Time-frequency representations of the sternocleidomastoid muscle electromyographic signal recorded with concentric ring electrodes Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 3785-3788

The use of non-invasive methods for the study of respiratory muscle signals can provide clinical information for the evaluation of the respiratory muscle function. The aim of this study was to evaluate time-frequency characteristics of the electrical activity of the sternocleidomastoid muscle recorded superficially by means of concentric ring electrodes (CREs) in a bipolar configuration. The CREs enhance the spatial resolution, attenuate interferences, as the cardiac activity, and also simplify the orientation problem associated to the electrode location. Five healthy subjects underwent a respiratory load test in which an inspiratory load was imposed during the inspiratory phase. During the test, the electromyographic signal of the sternocleidomastoid muscle (EMGsc) and the inspiratory mouth pressure (Pmouth) were acquired. Time-frequency characteristics of the EMGsc signal were analyzed by means of eight time-frequency representations (TFRs): the spectrogram (SPEC), the Morlet scalogram (SCAL), the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CHWD), two generalized exponential distributions (GED1 and GED2), the Born-Jordan distribution (BJD) and the Cone-Kernel distribution (CKD). The instantaneous central frequency of the EMGsc showed an increasing behavior during the inspiratory cycle and with the increase of the inspiratory load. The bilinear TFRs (WVD, CHWD, GEDs and BJD) were less sensitive to cardiac activity interference than classical TFRs (SPEC and SCAL). The GED2 was the TFR that shown the best results for the characterization of the instantaneous central frequency of the EMGsc.

Keywords: Electrodes, Interference, Kernel, Mouth, Muscles, Spectrogram, Time-frequency analysis


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2015). EMG-derived respiration signal using the fixed sample entropy during an Inspiratory load protocol Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 1703-1706

Extracting clinical information from one single measurement represents a step forward in the assessment of the respiratory muscle function. This attracting idea entails the reduction of the instrumentation and fosters to develop new medical integrated technologies. We present the use of the fixed sample entropy (fSampEn) as a more direct method to non-invasively derive the breathing activity from the diaphragm electromyographic (EMGdi) signal, and thus to extract the respiratory rate, an important vital sign which is cumbersome and time-consuming to be measured by clinicians. fSampEn is a method to evaluate the EMGdi activity that is less sensitive to the cardiac activity (ECG) and its application has proven to be useful to evaluate the load of the respiratory muscles. The behavior of the proposed method was tested in signals from two subjects that performed an inspiratory load protocol, which consists of increments in the inspiratory mouth pressure (Pmouth). Two respiratory signals were derived and compared to the Pmouth signal: the ECG-derived respiration (EDR) signal from the lead-I configuration, and the EMG-derived respiration (EMGDR) signal by applying the fSampEn method over the EMGdi signal. The similitude and the lag between signals were calculated through the cross-correlation between each derived respiratory signal and the Pmouth. The EMGDR signal showed higher correlation and lower lag values (≥ 0.91 and ≤ 0.70 s, respectively) than the EDR signal (≥ 0.83 and ≤0.99 s, respectively). Additionally, the respiratory rate was estimated with the Pmouth, EDR and EMGDR signals showing very similar values. The results from this preliminary work suggest that the fSampEn method can be used to derive the respiration waveform from the respiratory muscle electrical activity.

Keywords: Band-pass filters, Electrocardiography, Electromyography, Entropy, Mouth, Muscles, Protocols


Urra, O., Casals, A., Jané, R., (2015). The impact of visual feedback on the motor control of the upper-limb Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3945-3948

Stroke is a leading cause of adult disability with upper-limb hemiparesis being one of the most frequent consequences. Given that stroke only affects the paretic arm's control structure (the set of synergies and activation vectors needed to perform a movement), we propose that the control structure of the non-affected arm can serve as a physiological reference to rehabilitate the paretic arm. However, it is unclear how rehabilitation can effectively tune the control structure of a patient. The use of Visual Feedback (VF) is recommended to boost stroke rehabilitation, as it is able to positively modify neural mechanisms and improve motor performance. Thus, in this study we investigate whether VF can effectively modify the control structure of the upper-limb. We asked six neurologically intact subjects to perform a complete upper-limb rehabilitation routine comprised of 12 movements in absence and presence of VF. Our results indicate that VF significantly increases interlimb similarity both in terms of synergies and activation coefficients. However, the magnitude of improvement depended upon each subject. In general, VF brings the control structure of the nondominant side closer to the control structure of dominant side, suggesting that VF modifies the control structure towards more optimized motor patterns. This is especially interesting because stroke mainly affects the activation coefficients of patients and because it has been shown that the control of the affected side resembles that of the nondominant side. In conclusion, VF may enhance motor performance by effectively tuning the control-structure. Notably, this finding offers new insights to design improved stroke rehabilitation.

Keywords: Bars, Biomedical engineering, Electrodes, Electromyography, Mirrors, Muscles, Visualization


Estrada, L., Torres, A., Garcia-Casado, J., Prats-Boluda, G., Yiyao, Ye-Lin, Jané, R., (2014). Evaluation of Laplacian diaphragm electromyographic recording in a dynamic inspiratory maneuver Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 2201-2204

The analysis of the electromyographic signal of the diaphragm muscle (EMGdi) can provide important information for evaluating the respiratory muscular function. The EMGdi can be recorded using surface Ag/AgCl disc electrodes in monopolar or bipolar configuration. However, these non-invasive EMGdi recordings are usually contaminated by the electrocardiographic (ECG) signal. EMGdi signal can also be noninvasively recorded using concentric ring electrodes in bipolar configuration (CRE) that estimate Laplacian surface potential. Laplacian recordings increase spatial resolution and attenuate distant bioelectric interferences, such as the ECG. Thus, the objective of this work is to compare and to evaluate CRE and traditional bipolar EMGdi recordings in a healthy subject during a dynamic inspiratory maneuver with incremental inspiratory loads. In the conducted study, it was calculated the cumulative percentage of power spectrum of EMGdi recordings to determine the signal bandwidth, and the power ratio between the EMGdi signal segments with and without cardiac activity. The results of this study suggest that EMGdi acquired with CRE electrodes is less affected by the ECG interference, achieves a wider bandwidth and a higher power ratio between segments without cardiac activity and with cardiac activity.

Keywords: Bandwidth, Electric potential, Electrocardiography, Electrodes, Interference, Laplace equations, Muscles


Estrada, L., Torres, A., Sarlabous, L., Fiz, J. A., Jané, R., (2014). Respiratory rate detection by empirical mode decomposition method applied to diaphragm mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3204-3207

Non-invasive evaluation of respiratory activity is an area of increasing research interest, resulting in the appearance of new monitoring techniques, ones of these being based on the analysis of the diaphragm mechanomyographic (MMGdi) signal. The MMGdi signal can be decomposed into two parts: (1) a high frequency activity corresponding to lateral vibration of respiratory muscles, and (2) a low frequency activity related to excursion of the thoracic cage. The purpose of this study was to apply the empirical mode decomposition (EMD) method to obtain the low frequency of MMGdi signal and selecting the intrinsic mode functions related to the respiratory movement. With this intention, MMGdi signals were acquired from a healthy subject, during an incremental load respiratory test, by means of two capacitive accelerometers located at left and right sides of rib cage. Subsequently, both signals were combined to obtain a new signal which contains the contribution of both sides of thoracic cage. Respiratory rate (RR) measured from the mechanical activity (RRMmg) was compared with that measured from inspiratory pressure signal (RRP). Results showed a Pearson's correlation coefficient (r = 0.87) and a good agreement (mean bias = -0.21 with lower and upper limits of -2.33 and 1.89 breaths per minute, respectively) between RRmmg and RRP measurements. In conclusion, this study suggests that RR can be estimated using EMD for extracting respiratory movement from low mechanical activity, during an inspiratory test protocol.

Keywords: Accelerometers, Band-pass filters, Biomedical measurement, Empirical mode decomposition, Estimation, IP networks, Muscles


Torres, A., Fiz, J. A., Jané, R., (2014). Cancellation of cardiac interference in diaphragm EMG signals using an estimate of ECG reference signal IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1000-1004

The analysis of the electromyographic signal of the diaphragm muscle (EMGdi) can provide important information in order to evaluate the respiratory muscular function. However, EMGdi signals are usually contaminated by the electrocardiographic (ECG) signal. An adaptive noise cancellation (ANC) based on event-synchronous cancellation can be used to reduce the ECG interference in the recorded EMGdi activity. In this paper, it is proposed an ANC scheme for cancelling the ECG interference in EMGdi signals using only the EMGdi signal (without acquiring the ECG signal). In this case the detection of the QRS complex has been performed directly in the EMGdi signal, and the ANC algorithm must be robust to false or missing QRS detections. Furthermore, an automatic criterion to select the adaptive constant of the LMS algorithm has been proposed (μ). The μ constant is selected automatically so that the canceling signal energy equals the energy of the reference signal (which is an estimation of the ECG interference present in the EMGdi signal). This approach optimizes the tradeoff between cancellation of ECG interference and attenuation of EMG component. A number of weights equivalent of a time window that contains several QRS complexes is selected in order to make the algorithm robust to QRS detection errors.

Keywords: Adaptive Canceller, EMG, Diaphragm muscle


Estrada, L., Torres, A., Garcia-Casado, J., Ye-Lin, Y., Jané, R., (2014). Evaluation of Laplacian diaphragm electromyographic recordings in a static inspiratory maneuver IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 977-980

Diaphragm electromyography (EMGdi) provides important information on diaphragm activity, to detect neuromuscular disorders of the most important muscle in the breathing inspiratory phase. EMGdi is habitually recorded using needles or esophageal catheters, with the implication of being invasive for patients. Surface electrodes offer an alternative for the non-invasive assessment of diaphragm activity. Ag/AgCl surface disc electrodes are used in monopolar or bipolar configuration to record EMGdi signals. On the other hand, Laplacian surface potential can be estimated by signal recording through active concentric ring electrodes. This kind of recording could reduce physiological interferences, increase the spatial selectivity and reduce orientation problems in the electrode location. The aim of this work is to compare EMGdi signals recorded simultaneously with disc electrodes in bipolar configuration and a Laplacian ring electrode over chest wall. EMGdi signal was recorded in one healthy subject during a breath hold maneuver and a static inspiratory maneuver based on Mueller’s technique. In order to estimate the covered frequency range and the degree of noise contamination in both bipolar and Laplacian EMGdi signals, the cumulative percentage of the power spectrum and the signal to noise ratio in sub-bands were determined. Furthermore, diaphragm fatigue was evaluated by means of amplitude and frequency parameters. Our findings suggest that Laplacian EMGdi recording covers a broader frequency range although with higher noise contamination compared to bipolar EMGdi recording. Finally, in Laplacian recording fatigue indexes showed a clearer trend for muscle fatigue detection and also a reduced cardiac interference, providing an alternative to bipolar recording for diaphragm fatigue studies.

Keywords: Laplacian electrode, Diaphragm muscle, Fatigue, Surface electromyography


Sarlabous, L., Torres, A., Fiz, J. A., Morera, J., Jané, R., (2013). Index for estimation of muscle force from mechanomyography based on the Lempel-Ziv algorithm Journal of Electromyography and Kinesiology , 23, (3), 548-557

The study of the amplitude of respiratory muscle mechanomyographic (MMG) signals could be useful in clinical practice as an alternative non-invasive technique to assess respiratory muscle strength. The MMG signal is stochastic in nature, and its amplitude is usually estimated by means of the average rectified value (ARV) or the root mean square (RMS) of the signal. Both parameters can be used to estimate MMG activity, as they correlate well with muscle force. These estimations are, however, greatly affected by the presence of structured impulsive noise that overlaps in frequency with the MMG signal. In this paper, we present a method for assessing muscle activity based on the Lempel-Ziv algorithm: the Multistate Lempel-Ziv (MLZ) index. The behaviour of the MLZ index was tested with synthesised signals, with various amplitude distributions and degrees of complexity, and with recorded diaphragm MMG signals. We found that this index, like the ARV and RMS parameters, is positively correlated with changes in amplitude of the diaphragm MMG components, but is less affected by components that have non-random behaviour (like structured impulsive noise). Therefore, the MLZ index could provide more information to assess the MMG-force relationship.

Keywords: Diaphragm, Electromyography, Lempel-Ziv, Mechanomyography, Muscle force, Respiratory muscles


Sarlabous, L., Torres, A., Fiz, J. A., Morera, J., Jané, R., (2012). Evaluation and adaptive attenuation of the cardiac vibration interference in mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 3400-3403

The study of the mechanomyographic signal of the diaphragm muscle (MMGdi) is a promising technique in order to evaluate the respiratory muscles effort. The relationship between amplitude and frequency parameters of this signal with the respiratory effort performed during respiration is of great interest for researchers and physicians due to its diagnostic potentials. However, MMGdi signals are frequently contaminated by a cardiac vibration or mechanocardiographic (MCG) signal. An adaptive noise cancellation (ANC) can be used to reduce the MCG interference in the recorded MMGdi activity. In this paper, it is evaluated the proposed ANC scheme by means of a synthetic MMGdi signal with a controlled MCG interference. The Pearson's correlation coefficient (PCC) between both root mean square (RMS) and mean frequency (fm) of the synthetic MMGdi signal are considerably reduced with the presence of cardiac vibration noise (from 0.95 to 0.87, and from 0.97 to 0.76, respectively). With the ANC algorithm proposed the effect of the MCG noise on the amplitude and frequency of MMG parameters is reduced considerably (PCC of 0.93 and 0.97 for the RMS and fm, respectively). The ANC method proposed in this work is an interesting technique to attenuate the cardiac interference in respiratory MMG signals. Further investigation should be carried out to evaluate the performance of the ANC algorithm in real MMGdi signals.

Keywords: Adaptive filters, Frequency modulation, Interference, Muscles, Noise cancellation, Vibrations, Cardiology, Medical signal processing, Muscle, Signal denoising, ANC algorithm, MCG interference, Pearson correlation coefficient, Adaptive noise cancellation, Cardiac vibration interference, Cardiac vibration noise, Diaphragm muscle, Mechanocardiographic signal, Mechanomyographic signals, Respiratory muscles effort


Moore, S. W., Roca-Cusachs, P., Sheetz, M. P., (2010). Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing Developmental Cell 19, (2), 194-206

Matrix and tissue rigidity guides many cellular processes, including the differentiation of stem cells and the migration of cells in health and disease. Cells actively and transiently test rigidity using mechanisms limited by inherent physical parameters that include the strength of extracellular attachments, the pulling capacity on these attachments, and the sensitivity of the mechanotransduction system. Here, we focus on rigidity sensing mediated through the integrin family of extracellular matrix receptors and linked proteins and discuss the evidence supporting these proteins as mechanosensors.

Keywords: Focal adhesion kinase, Atomic Force Microscopy, Smooth-muscle cells, Traction forces, Living cells, Mechanical force, Locomoting cells


Sarlabous, L., Torres, A., Fiz, J. A., Gea, J., Marti nez-Llorens, J. M., Morera, J., Jané, R., (2010). Interpretation of the approximate entropy using fixed tolerance values as a measure of amplitude variations in biomedical signals Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 5967-5970

A new method for the quantification of amplitude variations in biomedical signals through moving approximate entropy is presented. Unlike the usual method to calculate the approximate entropy (ApEn), in which the tolerance value (r) varies based on the standard deviation of each moving window, in this work ApEn has been computed using a fixed value of r. We called this method, moving approximate entropy with fixed tolerance values: ApEn/sub f/. The obtained results indicate that ApEn/sub f/ allows determining amplitude variations in biomedical data series. These amplitude variations are better determined when intermediate values of tolerance are used. The study performed in diaphragmatic mechanomyographic signals shows that the ApEn/sub f/ curve is more correlated with the respiratory effort than the standard RMS amplitude parameter. Furthermore, it has been observed that the ApEn/sub f/ parameter is less affected by the existence of impulsive, sinusoidal, constant and Gaussian noises in comparison with the RMS amplitude parameter.

Keywords: Practical, Theoretical or Mathematical/ biomechanics, Entropy, Gaussian noise, Medical signal processing, Muscle, Random processes/ approximate entropy interpretation, Fixed tolerance values, Diaphragmatic mechanomyographic signals, ApEnf curve, Respiratory effort, Gaussian noises


Torres, A., Sarlabous, L., Fiz, j A., Gea, J., Marti nez-Llorens, J. M., Morera, J., Jané, R., (2010). Noninvasive measurement of inspiratory muscle performance by means of diaphragm muscle mechanomyographic signals in COPD patients during an incremental load respiratory test Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2493-2496

The study of mechanomyographic (MMG) signals of respiratory muscles is a promising noninvasive technique in order to evaluate the respiratory muscular effort and efficiency. In this work, the MMG signal of the diaphragm muscle it is evaluated in order to assess the respiratory muscular function in Chronic Obstructive Pulmonary Disease (COPD) patients. The MMG signals from left and right hemidiaphragm were acquired using two capacitive accelerometers placed on both left and right sides of the costal wall surface. The MMG signals and the inspiratory pressure signal were acquired while the COPD patients carried out an inspiratory load respiratory test. The population of study is composed of a group of 6 patients with severe COPD (FEV1>50% ref and DLCO<50% ref). We have found high positive correlation coefficients between the maximum inspiratory pressure (IPmax) developed in a respiratory cycle and different amplitude parameters of both left and right MMG signals (RMS, left: 0.68+/-0.11 - right: 0.69+/-0.12; Re nyi entropy, left: - 0.73+/-0.10 - right: 0.77+/-0.08; Multistate Lempel-Ziv, left: 0.73+/-0.17 - right: 0.74+/-0.08), and negative correlation between the Pmax and the maximum frequency of the MMG signal spectrum (left: -0.39+/-0.19 - right: -0.65+/-0.09). Furthermore, we found that the slope of the evolution of the MMG amplitude parameters, as the load increases during the respiratory test, has positive correlation with the %FEV1/FVC pulmonary function test parameter of the six COPD patients analyzed (RMS, left: 0.38 - right: 0.41; Re nyi entropy, left: 0.45 - right: 0.63; Multistate Lempel-Ziv, left: 0.39 - right: 0.64). These results suggest that the information provided by MMG signals could be used in order to evaluate the respiratory effort and the muscular efficiency in COPD patients.

Keywords: Accelerometers, Biomechanics, Biomedical measurement, Diseases, Medical signal processing, Muscle


Sunyer, R., Trepat, X., Fredberg, J. J., Farre, R., Navajas, D., (2009). The temperature dependence of cell mechanics measured by atomic force microscopy Physical Biology 6, (2), 25009

The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.

Keywords: Membrane Stress Failure, Frog Skeletal-Muscle, Extracellular-Matrix, Glass-Transition, Energy Landscape, Actin-Filaments, Living Cell, Single, Traction, Cytoskeleton


Orini, Michele, Giraldo, Beatriz F., Bailon, Raquel, Vallverdu, Montserrat, Mainardi, Luca, Benito, Salvador, Diaz, Ivan, Caminal, Pere, (2008). Time-frequency analysis of cardiac and respiratory parameters for the prediction of ventilator weaning IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 2793-2796

Mechanical ventilators are used to provide life support in patients with respiratory failure. Assessing autonomic control during the ventilator weaning provides information about physiopathological imbalances. Autonomic parameters can be derived and used to predict success in discontinuing from the mechanical support. Time-frequency analysis is used to derive cardiac and respiratory parameters, as well as their evolution in time, during ventilator weaning in 130 patients. Statistically significant differences have been observed in autonomic parameters between patients who are considered ready for spontaneous breathing and patients who are not. A classification based on respiratory frequency, heart rate and heart rate variability spectral components has been proposed and has been able to correctly classify more than 80% of the cases.

Keywords: Automatic Data Processing, Databases, Factual, Electrocardiography, Humans, Models, Statistical, Respiration, Respiration, Artificial, Respiratory Insufficiency, Respiratory Mechanics, Respiratory Muscles, Signal Processing, Computer-Assisted, Time Factors, Ventilator Weaning, Ventilators, Mechanical, Work of Breathing