Publications

by Keyword: Nanomachines


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Horteläo, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano Article ASAP

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting


Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, A., Sánchez, S., (2018). Enzyme-powered nanobots enhance anticancer drug delivery Advanced Functional Materials 28, 1705086

The use of enzyme catalysis to power micro- and nanomotors exploiting biocompatible fuels has opened new ventures for biomedical applications such as the active transport and delivery of specific drugs to the site of interest. Here, urease-powered nanomotors (nanobots) for doxorubicin (Dox) anticancer drug loading, release, and efficient delivery to cells are presented. These mesoporous silica-based core-shell nanobots are able to self-propel in ionic media, as confirmed by optical tracking and dynamic light scattering analysis. A four-fold increase in drug release is achieved by nanobots after 6 h compared to their passive counterparts. Furthermore, the use of Dox-loaded nanobots presents an enhanced anticancer efficiency toward HeLa cells, which arises from a synergistic effect of the enhanced drug release and the ammonia produced at high concentrations of urea substrate. A higher content of Dox inside HeLa cells is detected after 1, 4, 6, and 24 h incubation with active nanobots compared to passive Dox-loaded nanoparticles. The improvement in drug delivery efficiency achieved by enzyme-powered nanobots may hold potential toward their use in future biomedical applications such as the substrate-triggered release of drugs in target locations.

Keywords: Drug delivery, Enzymatic catalysis, Nanobots, Nanomachines, Nanomotors


Wang, Xu, Sridhar, Varun, Guo, Surong, Talebi, Nahid, Miguel-López, Albert, Hahn, Kersten, van Aken, Peter A., Sánchez, Samuel, (2018). Fuel-free nanocap-like motors actuated under visible light Advanced Functional Materials 28, (25), 1705862

The motion of nanomotors triggered by light sources will provide new alternative routes to power nanoarchitectures without the need of chemical fuels. However, most light-driven nanomotors are triggered by UV-light, near infrared reflection, or laser sources. It is demonstrated that nanocap shaped Au/TiO2 nanomotors (175 nm in diameter) display increased Brownian motion in the presence of broad spectrum visible light. The motion results from the surface plasmon resonance effect leading to self-electrophoresis between the Au and TiO2 layers, a mechanism called plasmonic photocatalytic effect in the field of photocatalysis. This mechanism is experimentally characterized by electron energy loss spectroscopy, energy-filtered transmission electron microscopy, and optical video tracking. This mechanism is also studied in a more theoretical manner using numerical finite-difference time-domain simulations. The ability to power nanomaterials with visible light may result in entirely new applications for externally powered micro/nanomotors.

Keywords: Enhanced Brownian motion, Fuel-free nanomotors, Nanomachines, Self-electrophoresis, Visible light


Ma, Xing, Sánchez, Samuel, (2017). Self-propelling micro-nanorobots: challenges and future perspectives in nanomedicine Nanomedicine 12, (12), 1363-1367

Ma, X., Sánchez, S., (2017). Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme Tetrahedron , 73, (33), 4883-4886

Enzyme triggered bio-catalytic reactions convert chemical energy into mechanical force to power micro/nano-machines. Though there have been reports about enzymes powered micro/nano-motors, enzymatic Janus nano-motor smaller than 100 nm has not been reported yet. Here, we prepared an enzyme powered Janus nano-motor by half-capping a thin layer of silicon dioxide (4 nm SiO2) onto a mesoporous silica nanoparticle (MSNP) of 90 nm, enabling asymmetry to the nano-architecture. The nano-motors are chemically powered by the decomposition of H2O2 triggered by the enzyme catalase located at one face of the nanoparticles. The self-propulsion is characterized by dynamic light scattering (DLS) and optical microscopy. The apparent diffusion coefficient was enhanced by 150% compared to their Brownian motion at low H2O2 concentration (i.e. below 3 wt%). Mesoporous nano-motors might serve as active drug delivery nano-systems in future biomedical applications such as intracellular drug delivery.

Keywords: Enzyme catalysis, Janus particles, Mesoporous silica, Nano-motors, Nanomachine, Self-propulsion