by Keyword: Nanomotors

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Horteläo, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano Article ASAP

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting

Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, A., Sánchez, S., (2018). Enzyme-powered nanobots enhance anticancer drug delivery Advanced Functional Materials , 28, 1705086

The use of enzyme catalysis to power micro- and nanomotors exploiting biocompatible fuels has opened new ventures for biomedical applications such as the active transport and delivery of specific drugs to the site of interest. Here, urease-powered nanomotors (nanobots) for doxorubicin (Dox) anticancer drug loading, release, and efficient delivery to cells are presented. These mesoporous silica-based core-shell nanobots are able to self-propel in ionic media, as confirmed by optical tracking and dynamic light scattering analysis. A four-fold increase in drug release is achieved by nanobots after 6 h compared to their passive counterparts. Furthermore, the use of Dox-loaded nanobots presents an enhanced anticancer efficiency toward HeLa cells, which arises from a synergistic effect of the enhanced drug release and the ammonia produced at high concentrations of urea substrate. A higher content of Dox inside HeLa cells is detected after 1, 4, 6, and 24 h incubation with active nanobots compared to passive Dox-loaded nanoparticles. The improvement in drug delivery efficiency achieved by enzyme-powered nanobots may hold potential toward their use in future biomedical applications such as the substrate-triggered release of drugs in target locations.

Keywords: Drug delivery, Enzymatic catalysis, Nanobots, Nanomachines, Nanomotors

Wang, Xu, Sridhar, Varun, Guo, Surong, Talebi, Nahid, Miguel-López, Albert, Hahn, Kersten, van Aken, Peter A., Sánchez, Samuel, (2018). Fuel-free nanocap-like motors actuated under visible light Advanced Functional Materials , 28, (25), 1705862

The motion of nanomotors triggered by light sources will provide new alternative routes to power nanoarchitectures without the need of chemical fuels. However, most light-driven nanomotors are triggered by UV-light, near infrared reflection, or laser sources. It is demonstrated that nanocap shaped Au/TiO2 nanomotors (175 nm in diameter) display increased Brownian motion in the presence of broad spectrum visible light. The motion results from the surface plasmon resonance effect leading to self-electrophoresis between the Au and TiO2 layers, a mechanism called plasmonic photocatalytic effect in the field of photocatalysis. This mechanism is experimentally characterized by electron energy loss spectroscopy, energy-filtered transmission electron microscopy, and optical video tracking. This mechanism is also studied in a more theoretical manner using numerical finite-difference time-domain simulations. The ability to power nanomaterials with visible light may result in entirely new applications for externally powered micro/nanomotors.

Keywords: Enhanced Brownian motion, Fuel-free nanomotors, Nanomachines, Self-electrophoresis, Visible light

Parmar, J., Villa, K., Vilela, D., Sánchez, S., (2017). Platinum-free cobalt ferrite based micromotors for antibiotic removal Applied Materials Today , 9, 605-611

Self-propelled micromotors have previously shown to enhance pollutant removal compared to non-motile nano-micro particles. However, these systems are expensive, difficult to scale-up and require surfactant for efficient work. Efficient and inexpensive micromotors are desirable for their practical applications in water treatment technologies. We describe cobalt-ferrite based micromotors (CFO micromotors) fabricated by a facile and scalable synthesis, that produce hydroxyl radicals via Fenton-like reaction and take advantage of oxygen gas generated during this reaction for self-propulsion. Once the reaction is complete, the CFO micromotors can be easily separated and collected due to their magnetic nature. The CFO micromotors are demonstrated for highly efficient advanced oxidative removal of tetracycline antibiotic from the water. Furthermore, the effects of different concentrations of micromotors and hydrogen peroxide on the antibiotic degradation were studied, as well as the generation of the highly reactive hydroxyl radicals responsible for the oxidation reaction.

Keywords: Degradation, Fenton reaction, Microbots, Nanomotors, Self-propelled Micromotors, Water treatment

Ma, Xing, Sánchez, Samuel, (2017). Self-propelling micro-nanorobots: challenges and future perspectives in nanomedicine Nanomedicine 12, (12), 1363-1367

Ma, X., Jannasch, A., Albrecht, U. R., Hahn, K., Miguel-López, A., Schäffer, E., Sánchez, S., (2015). Enzyme-powered hollow mesoporous Janus nanomotors Nano Letters , 15, (10), 7043-7050

The development of synthetic nanomotors for technological applications in particular for life science and nanomedicine is a key focus of current basic research. However, it has been challenging to make active nanosystems based on biocompatible materials consuming nontoxic fuels for providing self-propulsion. Here, we fabricate self-propelled Janus nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs), which are powered by biocatalytic reactions of three different enzymes: catalase, urease, and glucose oxidase (GOx). The active motion is characterized by a mean-square displacement (MSD) analysis of optical video recordings and confirmed by dynamic light scattering (DLS) measurements. We found that the apparent diffusion coefficient was enhanced by up to 83%. In addition, using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.

Keywords: Enzyme, Hollow mesoporous silica nanoparticles, Hybrid motors, Janus particles, Nanomotors, Optical tweezers

Sánchez, S., Soler, L., Katuri, J., (2015). Chemically powered micro- and nanomotors Angewandte Chemie - International Edition , 54, (4), 1414-1444

Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.

Keywords: Catalysis, Micromotors, Nanomotors, Robots, Self-propulsion