by Keyword: Neural nets

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Gonzalez, H., Acevedo, H., Arizmendi, C., Giraldo, B. F., (2013). Methodology for determine the moment of disconnection of patients of the mechanical ventilation using discrete wavelet transform Complex Medical Engineering (CME) 2013 ICME International Conference , IEEE (Beijing, China) , 483-486

The process of weaning from mechanical ventilation is one of the challenges in intensive care units. 66 patients under extubation process (T-tube test) were studied: 33 patients with successful trials and 33 patients who failed to maintain spontaneous breathing and were reconnected. Each patient was characterized using 7 time series from respiratory signals, and for each serie was evaluated the discrete wavelet transform. It trains a neural network for discriminating between patients from the two groups.

Keywords: discrete wavelet transforms, neural nets, patient treatment, pneumodynamics, time series, ventilation, T-tube test, discrete wavelet transform, extubation process, intensive care units, mechanical ventilation, moment of disconnection, neural network, patients, respiratory signals, spontaneous breathing, time series, weaning, Mechanical Ventilation, Neural Networks, Time series from respiratory signals, Wavelet Transform

Marco, Santiago, (2011). Signal processing for chemical sensing: Statistics or biological inspiration Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 145-146

Current analytical instrumentation and continuous sensing can provide huge amounts of data. Automatic signal processing and information evaluation is needed to overcome drowning in data. Today, statistical techniques are typically used to analyse and extract information from continuous signals. However, it is very interesting to note that biology (insects and vertebrates) has found alternative solutions for chemical sensing and information processing. This is a brief introduction to the developments in the European Project: Bio-ICT NEUROCHEM: Biologically Inspired Computation for Chemical Sensing (grant no. 216916) Fp7 project devoted to biomimetic olfactory systems.

Keywords: Signal processing, Chemioception, Neural nets, Computational complexity

Tarzan-Lorente, M., Gutierrez-Galvez, A., Martinez, D., Marco, S., (2010). A biologically inspired associative memory for artificial olfaction Practica 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 6 pp.

In this paper, we propose a biologically inspired architecture for a Hopfield-like associative memory applied to artificial olfaction. The proposed algorithm captures the projection between two neural layers of the insect olfactory system (Antennal Lobe and Mushroom Body) with a kernel based projection. We have tested its classification performance as a function of the size of the training set and the time elapsed since training and compared it with that obtained with a Support Vector Machine.

Keywords: Biocomputing, Chemioception, Content-addressable storage, Hopfield neural nets, Support vector machines

Correa, L. S., Laciar, E., Mut, V., Giraldo, B. F., Torres, A., (2010). Multi-parameter analysis of ECG and Respiratory Flow signals to identify success of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) -----, 6070-6073

Statistical analysis, power spectral density, and Lempel Ziv complexity, are used in a multi-parameter approach to analyze four temporal series obtained from the Electrocardiographic and Respiratory Flow signals of 126 patients on weaning trials. In which, 88 patients belong to successful group (SG), and 38 patients belong to failure group (FG), i.e. failed to maintain spontaneous breathing during trial. It was found that mean values of cardiac inter-beat and breath durations give higher values for SG than for FG; Kurtosis coefficient of the spectrum of the rapid shallow breathing index is higher for FG; also Lempel Ziv complexity mean values associated with the respiratory flow signal are bigger for FG. Patients were then classified with a pattern recognition neural network, obtaining 80% of correct classifications (81.6% for FG and 79.5% for SG).

Keywords: Electrocardiography, Medical signal processing, Neural nets, Pattern recognition, Pneumodynamics, Signal classification, Statistical analysis, ECG, Kurtosis coefficient, Lempel Ziv complexity, Breath durations, Cardiac interbeat durations, Electrocardiography, Multiparameter analysis, Pattern recognition neural network, Power spectral density, Respiratory flow signals, Signal classification, Spontaneous breathing, Statistical analysis, Weaning trials