Publications

by Keyword: Neuroimaging


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Lambrecht, Stefan, Urra, Oiane, Grosu, Svetlana, Pérez, Soraya, (2014). Emerging rehabilitation in cerebral palsy Biosystems & Biorobotics Emerging Therapies in Neurorehabilitation (ed. Pons, José L., Torricelli, Diego), Springer Berlin Heidelberg (London, UK) 4, 23-49

Cerebral Palsy (CP) is the most frequent disability affecting children. Although the effects of CP are diverse this chapter focuses on the impaired motor control of children suffering from spastic diplegia, particularly in the lower limb. The chapter collects the most relevant techniques that are used or might be useful to overcome the current limitations existing in the diagnosis and rehabilitation of CP. Special emphasis is placed on the role that emerging technologies can play in this field. Knowing in advance the type and site of brain injury could assist the clinician in selecting the appropriate therapy. In this context, neuroimaging techniques are being recommended as an evaluation tool in children with CP; we describe a variety of imaging technologies such as Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI), etc. But creating new knowledge in itself is not enough; there must be a transfer from progress through research to advances in the clinical field. The classic therapeutic approach of CP thus hampers the optimal rehabilitation of the targeted component. Traditional therapies may be optimized if complemented with treatments. We try to collect a wide range of emerging technologies and provide some criteria to select the adequate technology based on the characteristics of the neurological injury. For example, exoskeleton based over-ground gait training is suggested to be more effective than treadmill-based gait training. So, we suggest a new point of view combining different technologies in order to provide the foundations of a rational design of the individual rehabilitation strategy.

Keywords: Cerebral palsy, Robotics, Neurostimulation, Neuroimaging, Myoelectric signals