Publications

by Keyword: Osteointegration


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Hoyos-Nogués, Mireia, Buxadera-Palomero, Judit, Ginebra, Maria-Pau, Manero, José María, Gil, F. J., Mas-Moruno, Carlos, (2018). All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants Colloids and Surfaces B: Biointerfaces 169, 30-40

Strategies to inhibit initial bacterial adhesion are extremely important to prevent infection on biomaterial surfaces. However, the simultaneous attraction of desired eukaryotic cells remains a challenge for successful biomaterial-host tissue integration. Here we describe a method for the development of a trifunctional coating that repels contaminating bacteria, kills those that adhere, and promotes osteoblast adhesion. To this end, titanium surfaces were functionalized by electrodeposition of an antifouling polyethylene glycol (PEG) layer and subsequent binding of a peptidic platform with cell-adhesive and bactericidal properties. The physicochemical characterization of the samples via SEM, contact angle, FTIR and XPS analysis verified the successful binding of the PEG layer and the biomolecules, without altering the morphology and topography of the samples. PEG coatings inhibited protein adsorption and osteoblast-like (SaOS-2) attachment; however, the presence of cell adhesive domains rescued osteoblast adhesion, yielding higher values of cell attachment and spreading compared to controls (p < 0.05). Finally, the antibacterial potential of the coating was measured by live/dead assays and SEM using S. sanguinis as a model of early colonizer in oral biofilms. The presence of PEG layers significantly reduced bacterial attachment on the surfaces (p < 0.05). This antibacterial potential was further increased by the bactericidal peptide, yielding values of bacterial adhesion below 0.2% (p < 0.05). The balance between the risk of infection and the optimal osteointegration of a biomaterial is often described as “the race for the surface”, in which contaminating bacteria and host tissue cells compete to colonize the implant. In the present work, we have developed a multifunctional coating for a titanium surface that promotes the attachment and spreading of osteoblasts, while very efficiently inhibits bacterial colonization, thus holding promise for application in bone replacing applications.

Keywords: Polyethylene glycol, Antibacterial, Osteointegration, Multifunctionality, Peptides, Titanium


Michiardi, A., Helary, G., Nguyen, P. C. T., Gamble, L. J., Anagnostou, F., Castner, D. G., Migonney, V., (2010). Bioactive polymer grafting onto titanium alloy surfaces Acta Biomaterialia 6, (2), 667-675

Bioactive polymers bearing sulfonate (styrene sodium sulfonate, NaSS) and carboxylate (methylacrylic acid, MA) groups were grafted onto Ti6Al4V alloy surfaces by a two-step procedure. The Ti alloy surfaces were first chemically oxidized in a piranha solution and then directly subjected to radical polymerization at 70 °C in the absence of oxygen. The grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the toluidine blue colorimetric method. Toluidine blue results showed 1-5 μg cm-2 of polymer was grafted onto the oxidized Ti surfaces. Grafting resulted in a decrease in the XPS Ti and O signals from the underlying Ti substrate and a corresponding increase in the XPS C and S signals from the polymer layer. The ToF-SIMS intensities of the S- and SO- ions correlated linearly with the XPS atomic percent S concentrations and the ToF-SIMS intensity of the TiO3H2- ion correlated linearly with the XPS atomic per cent Ti concentration. Thus, the ToF-SIMS S-, SO- and TiO3H2- intensities can be used to quantify the composition and amount of grafted polymer. ToF-SIMS also detected ions that were more characteristic of the polymer molecular structure (C6H4SO3- and C8H7SO3- from NaSS, C4H5O2- from MA), but the intensity of these peaks depended on the polymer thickness and composition. An in vitro cell culture test was carried out with human osteoblast-like cells to assess the influence of the grafted polymers on cell response. Cell adhesion after 30 min of incubation showed significant differences between the grafted and ungrafted surfaces. The NaSS grafted surfaces showed the highest degree of cell adhesion while the MA-NaSS grafted surfaces showed the lowest degree of cell adhesion. After 4 weeks in vivo in rabbit femoral bones, bone was observed to be in direct contact with all implants. The percentage of mineralized tissue around the implants was similar for NaSS grafted and non-grafted implants (59% and 57%). The MA-NaSS grafted implant exhibited a lower amount of mineralized tissue (47%).

Keywords: Bioactive polymers, Osteointegration, Titanium alloy, ToF-SIMS, XPS