Publications

by Keyword: Proteomics


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Oller-Moreno, Sergio, Cominetti, Ornella, Galindo, Antonio Núñez, Irincheeva, Irina, Corthésy, John, Astrup, Arne, Saris, Wim H. M., Hager, Jörg, Kussmann, Martin, Dayon, Loïc, (2018). The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention PROTEOMICS - Clinical Applications 12, (1), 1600150

Purpose : The nutritional intervention program “DiOGenes” focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore their relation to body mass index, fat mass, insulin resistance and sensitivity. Experimental Design : Relative protein quantification was obtained at baseline and after combined weight loss/maintenance phases using isobaric tagging and MS/MS. A Welch t-test determined proteins differentially present after intervention. Protein relationships with clinical variables were explored using univariate linear models, considering collection center, gender and age as confounding factors. Results : 473 subjects were measured at baseline and end of the intervention; 39 proteins were longitudinally differential. Proteins with largest changes were sex hormone-binding globulin, adiponectin, C-reactive protein, calprotectin, serum amyloid A, and proteoglycan 4 (PRG4), whose association with obesity and weight loss is known. We identified new putative biomarkers for weight loss/maintenance. Correlation between PRG4 and proline-rich acidic protein 1 (PRAP1) variation and Matsuda insulin sensitivity increment was showed. Conclusions and Clinical Relevance : MS-based proteomic analysis of a large cohort of non-diabetic overweight and obese individuals concomitantly identified known and novel proteins associated with weight loss and maintenance.

Keywords: Biomarker, Diabetes, Large-scale study, Mass spectrometry, Obesity, Proteomics