Publications

by Keyword: RGD


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Casanellas, Ignasi, Lagunas, Anna, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, J. A., Becerra, J., Samitier, Josep, (2020). The Janus role of adhesion in chondrogenesis International Journal of Molecular Sciences 21, (15), 5269

Tackling the first stages of the chondrogenic commitment is essential to drive chondrogenic differentiation to healthy hyaline cartilage and minimize hypertrophy. During chondrogenesis, the extracellular matrix continuously evolves, adapting to the tissue adhesive requirements at each stage. Here, we take advantage of previously developed nanopatterns, in which local surface adhesiveness can be precisely tuned, to investigate its effects on prechondrogenic condensation. Fluorescence live cell imaging, immunostaining, confocal microscopy and PCR analysis are used to follow the condensation process on the nanopatterns. Cell tracking parameters, condensate morphology, cell–cell interactions, mechanotransduction and chondrogenic commitment are evaluated in response to local surface adhesiveness. Results show that only condensates on the nanopatterns of high local surface adhesiveness are stable in culture and able to enter the chondrogenic pathway, thus highlighting the importance of controlling cell–substrate adhesion in the tissue engineering strategies for cartilage repair.

Keywords: Dendrimer, Nanopatterning, RGD, Mesenchymal cell condensation, Cell–cell interactions, YAP, Chondrogenesis


Rodríguez-Pereira, Cristina, Lagunas, Anna, Casanellas, Ignasi, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, José A., Becerra, José, Samitier, Josep, Blanco, Francisco J., Magalhães, Joana, (2020). RGD-dendrimer-poly(L-lactic) acid nanopatterned substrates for the early chondrogenesis of human mesenchymal stromal cells derived from osteoarthritic and healthy donors Materials 13, (10), 2247

Aiming to address a stable chondrogenesis derived from mesenchymal stromal cells (MSCs) to be applied in cartilage repair strategies at the onset of osteoarthritis (OA), we analyzed the effect of arginine–glycine–aspartate (RGD) density on cell condensation that occurs during the initial phase of chondrogenesis. For this, we seeded MSC-derived from OA and healthy (H) donors in RGD-dendrimer-poly(L-lactic) acid (PLLA) nanopatterned substrates (RGD concentrations of 4 × 10−9, 10−8, 2.5 × 10−8, and 10−2 w/w), during three days and compared to a cell pellet conventional three-dimensional culture system. Molecular gene expression (collagens type-I and II–COL1A1 and COL2A1, tenascin-TNC, sex determining region Y-box9-SOX9, and gap junction protein alpha 1–GJA1) was determined as well as the cell aggregates and pellet size, collagen type-II and connexin 43 proteins synthesis. This study showed that RGD-tailored first generation dendrimer (RGD-Cys-D1) PLLA nanopatterned substrates supported the formation of pre-chondrogenic condensates from OA- and H-derived human bone marrow-MSCs with enhanced chondrogenesis regarding the cell pellet conventional system (presence of collagen type-II and connexin 43, both at the gene and protein level). A RGD-density dependent trend was observed for aggregates size, in concordance with previous studies. Moreover, the nanopatterns’ had a higher effect on OA-derived MSC morphology, leading to the formation of bigger and more compact aggregates with improved expression of early chondrogenic markers.

Keywords: Cell condensation, Gap junctions, RGD-density, Chondrogenic differentiation, Osteoarthritis


Casanellas, Ignasi, Lagunas, Anna, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, José A., Becerra, José, Samitier, Josep, (2019). Matrix nanopatterning regulates mesenchymal differentiation through focal adhesion size and distribution according to cell fate Biomimetics Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) , MDPI (Barcelona, Spain) 4, (2), 43

Extracellular matrix remodeling plays a pivotal role during mesenchyme patterning into different lineages. Tension exerted from cell membrane receptors bound to extracellular matrix ligands is transmitted by the cytoskeleton to the cell nucleus inducing gene expression. Here, we used dendrimer-based arginine–glycine–aspartic acid (RGD) uneven nanopatterns, which allow the control of local surface adhesiveness at the nanoscale, to unveil the adhesive requirements of mesenchymal tenogenic and osteogenic commitments. Cell response was found to depend on the tension resulting from cell–substrate interactions, which affects nuclear morphology and is regulated by focal adhesion size and distribution.

Keywords: Arginine–glycine–aspartic acid (RGD), Nanopattern, Mesenchymal stem cells, Tenogenesis, Osteogenesis, Cell nuclei, Focal adhesions


Casanellas, Ignasi, Lagunas, Anna, Tsintzou, Iro, Vida, Yolanda, Collado, Daniel, Pérez-Inestrosa, Ezequiel, Rodríguez-Pereira, Cristina, Magalhaes, Joana, Gorostiza, Pau, Andrades, José A., Becerra, José, Samitier, Josep, (2018). Dendrimer-based uneven nanopatterns to locally control surface adhesiveness: A method to direct chondrogenic differentiation Journal of Visualized Experiments Bioengineering, (131), e56347

Cellular adhesion and differentiation is conditioned by the nanoscale disposition of the extracellular matrix (ECM) components, with local concentrations having a major effect. Here we present a method to obtain large-scale uneven nanopatterns of arginine-glycine-aspartic acid (RGD)-functionalized dendrimers that permit the nanoscale control of local RGD surface density. Nanopatterns are formed by surface adsorption of dendrimers from solutions at different initial concentrations and are characterized by water contact angle (CA), X-ray photoelectron spectroscopy (XPS), and scanning probe microscopy techniques such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The local surface density of RGD is measured using AFM images by means of probability contour maps of minimum interparticle distances and then correlated with cell adhesion response and differentiation. The nanopatterning method presented here is a simple procedure that can be scaled up in a straightforward manner to large surface areas. It is thus fully compatible with cell culture protocols and can be applied to other ligands that exert concentration-dependent effects on cells.

Keywords: Bioengineering, Dendrimer, Nanopattern, Arginine-Glycine-Aspartic Acid (RGD), Atomic Force Microscopy (AFM), Cell Adhesion, Mesenchymal Stem Cells (Mscs), Chondrogenesis


Fraioli, R., Dashnyam, K., Kim, J. H., Perez, R. A., Kim, H. W., Gil, J., Ginebra, M. P., Manero, J. M., Mas-Moruno, C., (2016). Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo Acta Biomaterialia 43, 269-281

Surface modification stands out as a versatile technique to create instructive biomaterials that are able to actively direct stem cell fate. Chemical functionalization of titanium has been used in this work to stimulate the differentiation of human mesenchymal stem cells (hMSCs) into the osteoblastic lineage, by covalently anchoring a synthetic double-branched molecule (PTF) to the metal that allows a finely controlled presentation of peptidic motifs. In detail, the effect of the RGD adhesive peptide and its synergy motif PHSRN is studied, comparing a random distribution of the two peptides with the chemically-tailored disposition within the custom made synthetic platform, which mimics the interspacing between the motifs observed in fibronectin. Contact angle measurement and XPS analysis are used to prove the efficiency of functionalization. We demonstrate that, by rationally designing ligands, stem cell response can be efficiently guided towards the osteogenic phenotype: In vitro, PTF-functionalized surfaces support hMSCs adhesion, with higher cell area and formation of focal contacts, expression of the integrin receptor α5β1 and the osteogenic marker Runx2, and deposition a highly mineralized matrix, reaching values of mineralization comparable to fibronectin. Our strategy is also demonstrated to be efficient in promoting new bone growth in vivo in a rat calvarial defect. These results highlight the efficacy of chemical control over the presentation of bioactive peptides; such systems may be used to engineer bioactive surfaces with improved osseointegrative properties, or can be easily tuned to generate multi-functional coatings requiring a tailored disposition of the peptidic motifs. Statement of significance Organic coatings have been proposed as a solution to foster osseointegration of orthopedic implants. Among them, extracellular matrix-derived peptide motifs are an interesting biomimetic strategy to harness cell-surface interactions. Nonetheless, the combination of multiple peptide motifs in a controlled manner is essential to achieve receptor specificity and fully exploit the potentiality of synthetic peptides. Herein, we covalently graft to titanium a double branched molecule to guide stem cell fate in vitro and generate an osseoinductive titanium surface in vivo. Such synthetic ligand allows for the simultaneous presentation of two bioactive motifs, thus is ideal to test the effect of synergic sequences, such as RGD and PHSRN, and is a clear example of the versatility and feasibility of rationally designed biomolecules.

Keywords: hMSCs, Integrin-binding peptides, Osseointegration, RGD-PHSRN, Titanium


Lagunas, Anna , Comelles, Jordi, Martínez, Elena, Prats-Alfonso, Elisabet , Acosta, Gerardo A., Albericio, Fernando , Samitier, Josep , (2012). Cell adhesion and focal contact formation on linear RGD molecular gradients: study of non-linear concentration dependence effects Nanomedicine: Nanotechnology, Biology and Medicine , 8, (4), 432-439

Cell adhesion onto bioengineered surfaces is affected by a number of variables, including the former substrate derivatization process. In this investigation, we studied the correlation between cell adhesion and cell–adhesive ligand surface concentration and organization due to substrate modification. For this purpose, Arg-Gly-Asp (RGD) gradient surfaces were created on poly(methyl methacrylate) substrates by continuous hydrolysis and were then grafted with biotin-PEG-RGD molecules. Cell culture showed that adhesion behavior changes in a nonlinear way in the narrow range of RGD surface densities assayed (2.8 to 4.4 pmol/cm2), with a threshold value of 4.0 pmol/cm2 for successful cell attachment and spreading. This nonlinear dependence may be explained by nonhomogeneous RGD surface distribution at the nanometre scale, conditioned by the stochastic nature of the hydrolysis process. Atomic force microscopy analysis of the gradient surface showed an evolution of surface morphology compatible with this hypothesis.

Keywords: RGD gradient, Cell adhesion, Poly(methyl methacrylate), Hydrolysis, Biotin-streptavidin