by Keyword: Recombinant protein

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Guillem-Marti, J., Gelabert, M., Heras-Parets, A., Pegueroles, M., Ginebra, M. P., Manero, J. M., (2019). RGD mutation of the heparin binding II fragment of fibronectin for guiding mesenchymal stem cell behavior on titanium surfaces ACS Applied Materials and Interfaces 11, (4), 3666-3678

Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.

Keywords: Fibronectin, Growth factor, Mutation, Osseointegration, Recombinant protein, Titanium

Guillem-Marti, J., Boix-Lemonche, G., Gugutkov, D., Ginebra, M.-P., Altankov, G., Manero, J.M., (2018). Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface Nanomedicine 13, (8), 899-912

Aim: To develop a nanofiber (NF)-based biomimetic coating on titanium (Ti) that mimics the complex spatiotemporal organization of the extracellular matrix (ECM). Materials & methods: Recombinant cell attachment site (CAS) of fibronectin type III8-10 domain was co-electrospun with polylactic acid (PLA) and covalently bound on polished Ti discs. Osteoblast-like SaOS-2 cells were used to evaluate their complex bioactivity. Results: A significant increase of cell spreading was found on CAS/PLA hybrid NFs, followed by control pure PLA NFs and bare Ti discs. Cell proliferation showed similar trend being about twice higher on CAS/PLA NFs. The significantly increased ALP activity at day 21 indicated an enhanced differentiation of SaOS-2 cells. Conclusion: Coating of Ti implants with hybrid CAS/PLA NFs may improve significantly their osseointegration potential.

Keywords: Electrospinning, Fibronectin, Hybrid nanofibers, Osseointegration, PLA, Recombinant protein