Publications

by Keyword: Redundancy


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Fernandez, L., Marco, S., Gutierrez-Galvez, A., (2015). Robustness to sensor damage of a highly redundant gas sensor array Sensors and Actuators B: Chemical , 218, 296-302

Abstract In this paper we study the role of redundant sensory information to prevent the performance degradation of a chemical sensor array for different distributions of sensor failures across sensor types. The large amount of sensing conditions with two different types of redundancy provided by our sensor array makes possible a comprehensive experimental study. Particularly, our sensor array is composed of 8 different types of commercial MOX sensors modulated in temperature with two redundancy levels: (1) 12 replicates of each sensor type for a total of 96 sensors and (2) measurements using 16 load resistors per sensors for a total of 1536 redundant measures per second. We perform two experiments to determine the performance degradation of the array with increasing number of damaged sensors in two different scenarios of sensor faults distributions across sensor types. In the first experiment, we characterize the diversity and redundancy of the array for increasing number of damaged sensors. To measure diversity and redundancy, we proposed a functional definition based on clustering of sensor features. The second experiment is devoted to determine the performance degradation of the array for the effect of faulty sensors. To this end, the system is trained to separate ethanol, acetone and butanone at different concentrations using a PCA–LDA model. Test set samples are corrupted by means of three different simulated types of faults. To evaluate the performance of the array we used the Fisher score as a measure of odour separability. Our results show that to exploit to the utmost the redundancy of the sensor array faulty sensory units have to be distributed uniformly across the different sensor types.

Keywords: Gas sensor arrays, Sensor redundancy, Sensor diversity, Sensor faults aging, Sensor damage, MOX sensors, Large sensor arrays


Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2014). Robustness to sensor damage of a highly redundant gas sensor array Procedia Engineering 28th European Conference on Solid-State Transducers (EUROSENSORS 2014) , Eurosensors (Brescia, Italy) 87, 851-854

Abstract In this paper we study the role of redundant sensory information to prevent the performance degradation of a chemical sensor array as the number of faulty sensors increases. The large amount of sensing conditions with two different types of redundancy provided by our sensor array makes possible a comprehensive experimental study. Particularly, our sensor array is composed of 8 different types of commercial MOX sensors modulated in temperature with two redundancy levels: 1) 12 replicates of each sensor type for a total of 96 sensors, and 2) measurements using 16 load resistors per sensors for a total of 1536 redundant measures per second. The system is trained to identify ethanol, acetone and butanone using a PCA-LDA model. Test set samples are corrupted by means of three different simulated types of faults. To evaluate the tolerance of the array against sensor failure, the Fisher Score is used as a figure of merit for the corrupted test set samples projected on the PCA-LDA model.

Keywords: Gas ensor arrays, sensor redundancy, MOX sensors, large sensor arrays.


Auffarth, B., Lopez, M., Cerquides, J., (2010). Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images Lecture Notes in Artificial Intelligence 10th Industrial Conference on Data Mining (ed. Perner, P.), Springer-Verlag Berlin (Berlin, Germany) 6171, 248-262

In this paper we report on a study on feature selection within the minimum-redundancy maximum-relevance framework. Features are ranked by their correlations to the target vector. These relevance scores are then integrated with correlations between features in order to obtain a set of relevant and least-redundant features. Applied measures of correlation or distributional similarity for redunancy and relevance include Kolmogorov-Smirnov (KS) test, Spearman correlations, Jensen-Shannon divergence, and the sign-test. We introduce a metric called "value difference metric" (VDM) and present a simple measure, which we call "fit criterion" (FC). We draw conclusions about the usefulness of different measures. While KS-test and sign-test provided useful information, Spearman correlations are not fit for comparison of data of different measurement intervals. VDM was very good in our experiments as both redundancy and relevance measure. Jensen-Shannon and the sign-test are good redundancy measure alternatives and FC is a good relevance measure alternative.

Keywords: Distributional similarity, Divergence measure, Feature selection, Relevance and redundancy


Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2010). Gas sensor array system inspired on the sensory diversity and redundancy of the olfactory epithelium Procedia Engineering Eurosensor XXIV Conference (ed. Jakoby, B., Vellekoop, M.J.), Elsevier Science BV (Linz, Austria) 5, (0), 25-28

This paper presents a chemical sensing system that takes inspiration from the combination of sensory diversity and redundancy at the olfactory epithelium to enhance the chemical information obtained from the odorants. The system is based on commercial MOS sensors and achieves, first, diversity trough different types of MOS along with modulation of their temperatures, and second redundancy including 12 MOS sensors for each type (12×8) combined with a high-speed multiplexing system that allows connecting 16 load resistors with each and every one of the 96 sensors in about two seconds. Exposition of the system to ethanol, ammonia, and acetone at different concentrations shows how the system is able to capture a large amount of information of the identity and the concentration of the odorant.

Keywords: Gas sensor array, Biologically inspired system, Redundancy, Diversity, MOX sensors, Temperature modulation