Publications

by Keyword: Senior citizens


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Argerich, S., Herrera, S., Benito, S., Giraldo, J., (2016). Evaluation of periodic breathing in respiratory flow signal of elderly patients using SVM and linear discriminant analysis Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 4276-4279

Aging population is a major concern that is reflected in the increase of chronic diseases. Heart Failure (HF) is one of the most common chronic diseases of elderly people that is punctuated with acute episodes, which result in hospitalization. The periodic modulation of the amplitude of the breathing pattern is proved to be one of the multiple symptoms of an acute episode, and thus, the features extracted from its characterization contribute in the improvement of the first diagnosis of the clinical practice. The main objective of this study is to evaluate if the features extracted from the breathing pattern along with common clinical variables are reliable enough to detect Periodic Breathing (PB). A dataset of 44 elderly patients containing clinical information and a short record of electrocardiogram and respiratory flow signal was used to train two machine learning classification methods: Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). All the available clinical parameters within the dataset along with the parameters characterizing the respiratory pattern were used to classify the observations into two groups. SVM classification was optimized and performed using a = -8 and C = 10.04 giving an accuracy of 88.2 % sensitivity of 90 % and specificity of 85.7 % Similar results were achieved with LDA classifying with an accuracy of 82.4 %, a sensitivity of 81.8% and specificity of 83.3 % PB has been accurately detected using both classifiers.

Keywords: Support vector machines, Feature extraction, Training, Senior citizens, Standards, Training data, Hospitals


Tellez, J. P., Herrera, S., Benito, S., Giraldo, B. F., (2014). Analysis of the breathing pattern in elderly patients using the hurst exponent applied to the respiratory flow signal Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3422-3425

Due to the increasing elderly population and the extensive number of comorbidities that affect them, studies are required to determine future increments in admission to emergency departments. Some of these studies could focus on the relation between chronic diseases and breathing pattern in elderly patients. Variations in the fractal properties of respiratory signals can be associated with several diseases. To determine the relationship between these variations and breathing patterns, and to quantify the fractal properties of respiratory flow signals, we estimated the Hurst exponent (H). Detrended fluctuation analysis (DFA) and discrete wavelet transform-based estimation (DWTE) methods were applied. The estimation methods were analyzed using simulated data series generated by fractional Gaussian noise. 43 elderly patients (19 patients with a non-periodic breathing pattern - nPB, and 24 patients with a periodic breathing pattern - PB) were studied. The results were evaluated according to the length of data and the number of averaged data series used to obtain a good estimation. The DWTE method estimated the respiratory flow signals better than the DFA method, and obtained Hurst values clustered by group. We found significant differences in the H exponent (p = 0.002) between PB and nPB patients, which showed different behavior in the fractal properties.

Keywords: Discrete wavelet transforms, Diseases, Estimation, Fractals, Modulation, Senior citizens, Time series analysis


Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994

Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.

Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards


Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Study of the oscillatory breathing pattern in elderly patients Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 5228-5231

Some of the most common clinical problems in elderly patients are related to diseases of the cardiac and respiratory systems. Elderly patients often have altered breathing patterns, such as periodic breathing (PB) and Cheyne-Stokes respiration (CSR), which may coincide with chronic heart failure. In this study, we used the envelope of the respiratory flow signal to characterize respiratory patterns in elderly patients. To study different breathing patterns in the same patient, the signals were segmented into windows of 5 min. In oscillatory breathing patterns, frequency and time-frequency parameters that characterize the discriminant band were evaluated to identify periodic and non-periodic breathing (PB and nPB). In order to evaluate the accuracy of this characterization, we used a feature selection process, followed by linear discriminant analysis. 22 elderly patients (7 patients with PB and 15 with nPB pattern) were studied. The following classification problems were analyzed: patients with either PB (with and without apnea) or nPB patterns, and patients with CSR versus PB, CSR versus nPB and PB versus nPB patterns. The results showed 81.8% accuracy in the comparisons of nPB and PB patients, using the power of the modulation peak. For the segmented signal, the power of the modulation peak, the frequency variability and the interquartile ranges provided the best results with 84.8% accuracy, for classifying nPB and PB patients.

Keywords: cardiovascular system, diseases, feature extraction, geriatrics, medical signal processing, oscillations, pneumodynamics, signal classification, time-frequency analysis, Cheyne-Stokes respiration, apnea, cardiac systems, chronic heart failure, classification problems, discriminant band, diseases, elderly patients, feature selection process, frequency variability, interquartile ranges, linear discriminant analysis, nonperiodic breathing, oscillatory breathing pattern, periodic breathing, respiratory How signal, respiratory systems, signal segmentation, time 5 min, time-frequency parameters, Accuracy, Aging, Frequency modulation, Heart, Senior citizens, Time-frequency analysis