by Keyword: Smartphone

By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Burgués, J., Marco, S., (2018). Low power operation of temperature-modulated metal oxide semiconductor gas sensors Sensors 18, (2), 339

Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0–9 ppm) with environmental conditions, such as ambient humidity (15–75% relative humidity) and temperature (21–27 ◦C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher prediction errors.

Keywords: Smartphone, Metal-oxide semiconductor, Gas sensor, Low power, Temperature-modulation, Interferences

Isetta, V., Torres, M., González, K., Ruiz, C., Dalmases, M., Embid, C., Navajas, D., Farré, R., Montserrat, J. M., (2017). A New mHealth application to support treatment of sleep apnoea patients Journal of Telemedicine and Telecare 23, (1), 14-18

Introduction: Continuous positive airway pressure (CPAP) is the first-choice treatment for obstructive sleep apnoea (OSA), but adherence is frequently suboptimal. Innovative, patient-centred interventions are, therefore, needed to enhance compliance. Due to its low cost and ubiquity, mobile health (mHealth) technology seems particularly suited for this purpose. We endeavoured to develop an mHealth application called “APPnea,” aimed at promoting patient self-monitoring of CPAP treatment. We then assessed the feasibility and acceptability of APPnea in a group of OSA patients. Methods: Consecutive OSA patients used APPnea for six weeks. APPnea gave patients daily reminders to answer three questions about their OSA treatment (CPAP use, physical activity, and diet) and prompted them to upload their body weight weekly. Answers were saved to a secure server for further analysis. After completing the study, patients gave their anonymous opinions about APPnea. Results: We enrolled 60 patients with OSA receiving CPAP treatment. The mean age was 56 ± 10 years and the apnoea–hypopnea index was 47 ± 25 events/hour. In total, 63% of participants completed the daily questionnaire for more than 66% of the study period. Objective CPAP compliance was generally high (5.3 ± 1.6 hours/night). In a subset of 38 patients naïve to CPAP, those who used APPnea regularly had significantly higher CPAP compliance. Satisfaction levels were high for the majority of users. Conclusion: This mHealth intervention is not only feasible but also satisfactory to patients. Although larger randomized trials and cost-effectiveness studies should be performed, this study shows that APPnea could promote participation and improve compliance among patients with OSA, thereby improving outcomes.

Keywords: CPAP, MHealth, Sleep apnoea, Smartphone application