by Keyword: Stroke

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Ballester, B. R., Maier, M., Duff, A., Cameirão, M., Bermúdez, S., Duarte, E., Cuxart, A., Rodríguez, S., San Segundo Mozo, R. M., Verschure, P., (2019). A critical time window for recovery extends beyond one-year post-stroke Journal of neurophysiology Journal of Neurophysiology , 122, (1), 350-357

The impact of rehabilitation on post-stroke motor recovery and its dependency on the patient's chronicity remain unclear. The field has widely accepted the notion of a proportional recovery rule with a "critical window for recovery" within the first 3-6 mo poststroke. This hypothesis justifies the general cessation of physical therapy at chronic stages. However, the limits of this critical window have, so far, been poorly defined. In this analysis, we address this question, and we further explore the temporal structure of motor recovery using individual patient data from a homogeneous sample of 219 individuals with mild to moderate upper-limb hemiparesis. We observed that improvement in body function and structure was possible even at late chronic stages. A bootstrapping analysis revealed a gradient of enhanced sensitivity to treatment that extended beyond 12 mo poststroke. Clinical guidelines for rehabilitation should be revised in the context of this temporal structure. NEW & NOTEWORTHY Previous studies in humans suggest that there is a 3- to 6-mo "critical window" of heightened neuroplasticity poststroke. We analyze the temporal structure of recovery in patients with hemiparesis and uncover a precise gradient of enhanced sensitivity to treatment that expands far beyond the limits of the so-called critical window. These findings highlight the need for providing therapy to patients at the chronic and late chronic stages.

Keywords: Motor recovery, Neuroplasticity, Neurorehabilitation, Stroke recovery, Virtual reality

Maier, Martina, Rubio Ballester, Belén, Duff, Armin, Duarte Oller, Esther, Verschure, P., (2019). Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: A systematic meta-analysis Neurorehabilitation and Neural Repair 33, (2), 112-129

Background. Despite the rise of virtual reality (VR)-based interventions in stroke rehabilitation over the past decade, no consensus has been reached on its efficacy. This ostensibly puzzling outcome might not be that surprising given that VR is intrinsically neutral to its use—that is, an intervention is effective because of its ability to mobilize recovery mechanisms, not its technology. As VR systems specifically built for rehabilitation might capitalize better on the advantages of technology to implement neuroscientifically grounded protocols, they might be more effective than those designed for recreational gaming. Objective. We evaluate the efficacy of specific VR (SVR) and nonspecific VR (NSVR) systems for rehabilitating upper-limb function and activity after stroke. Methods. We conducted a systematic search for randomized controlled trials with adult stroke patients to analyze the effect of SVR or NSVR systems versus conventional therapy (CT). Results. We identified 30 studies including 1473 patients. SVR showed a significant impact on body function (standardized mean difference [SMD] = 0.23; 95% CI = 0.10 to 0.36; P = .0007) versus CT, whereas NSVR did not (SMD = 0.16; 95% CI = −0.14 to 0.47; P = .30). This result was replicated in activity measures. Conclusions. Our results suggest that SVR systems are more beneficial than CT for upper-limb recovery, whereas NSVR systems are not. Additionally, we identified 6 principles of neurorehabilitation that are shared across SVR systems and are possibly responsible for their positive effect. These findings may disambiguate the contradictory results found in the current literature.

Keywords: Stroke, Paresis, Virtual reality, Rehabilitation, Occupational therapy, Review

Maier, Martina, Ballester, Belén Rubio, Verschure, P., (2019). Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms Frontiers in Systems Neuroscience 13, 74

What are the principles underlying effective neurorehabilitation? The aim of neurorehabilitation is to exploit interventions based on human and animal studies about learning and adaptation, as well as to show that the activation of experience-dependent neuronal plasticity augments functional recovery after stroke. Instead of teaching compensatory strategies that do not reduce impairment but allow the patient to return home as soon as possible, functional recovery might be more sustainable as it ensures a long-term reduction in impairment and an improvement in quality of life. At the same time, neurorehabilitation permits the scientific community to collect valuable data, which allows inferring about the principles of brain organization. Hence neuroscience sheds light on the mechanisms of learning new functions or relearning lost ones. However, current rehabilitation methods lack the exact operationalization of evidence gained from skill learning literature, leading to an urgent need to bridge motor learning theory and present clinical work in order to identify a set of ingredients and practical applications that could guide future interventions. This work aims to unify the neuroscientific literature relevant to the recovery process and rehabilitation practice in order to provide a synthesis of the principles that constitute an effective neurorehabilitation approach. Previous attempts to achieve this goal either focused on a subset of principles or did not link clinical application to the principles of motor learning and recovery. We identified 15 principles of motor learning based on existing literature: massed practice, spaced practice, dosage, task-specific practice, goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of performance, modulate effector selection, action observation/embodied practice, motor imagery, and social interaction. We comment on trials that successfully implemented these principles and report evidence from experiments with healthy individuals as well as clinical work.

Keywords: Neurorehabilitation, Motor learning, Plasticity, Stroke, Principles

López-Carral, Héctor, Santos-Pata, D., Zucca, R., Verschure, P., (2019). How you type is what you type: Keystroke dynamics correlate with affective content ACII 2019 8th International Conference on Affective Computing and Intelligent Interaction , IEEE (Cabride, UK) , 1-5

Estimating the affective state of a user during a computer task traditionally relies on either subjective reports or analysis of physiological signals, facial expressions, and other measures. These methods have known limitations, can be intrusive and may require specialized equipment. An alternative would be employing a ubiquitous device of everyday use such as a standard keyboard. Here we investigate if we can infer the emotional state of a user by analyzing their typing patterns. To test this hypothesis, we asked 400 participants to caption a set of emotionally charged images taken from a standard database with known ratings of arousal and valence. We computed different keystroke pattern dynamics, including keystroke duration (dwell time) and latency (flight time). By computing the mean value of all of these features for each image, we found a statistically significant negative correlation between dwell times and valence, and between flight times and arousal. These results highlight the potential of using keystroke dynamics to estimate the affective state of a user in a non-obtrusive way and without the need for specialized devices.

Keywords: Feature extraction, Correlation, Keyboards, Task analysis, Statistical analysis, Affective computing, Standards, Keystroke, Keyboard, Typing, Arousal, Valence, Affect

Ballester, Rubio Belén, Nirme, Jens, Camacho, Irene, Duarte, Esther, Rodríguez, Susana, Cuxart, Ampar, Duff, Armin, Verschure, F. M. J. Paul, (2017). Domiciliary VR-based therapy for functional recovery and cortical reorganization: Randomized controlled trial in participants at the chronic stage post stroke JMIR Serious Games , 5, (3), e15

Background: Most stroke survivors continue to experience motor impairments even after hospital discharge. Virtual reality-based techniques have shown potential for rehabilitative training of these motor impairments. Here we assess the impact of at-home VR-based motor training on functional motor recovery, corticospinal excitability and cortical reorganization. Objective: The aim of this study was to identify the effects of home-based VR-based motor rehabilitation on (1) cortical reorganization, (2) corticospinal tract, and (3) functional recovery after stroke in comparison to home-based occupational therapy. Methods: We conducted a parallel-group, controlled trial to compare the effectiveness of domiciliary VR-based therapy with occupational therapy in inducing motor recovery of the upper extremities. A total of 35 participants with chronic stroke underwent 3 weeks of home-based treatment. A group of subjects was trained using a VR-based system for motor rehabilitation, while the control group followed a conventional therapy. Motor function was evaluated at baseline, after the intervention, and at 12-weeks follow-up. In a subgroup of subjects, we used Navigated Brain Stimulation (NBS) procedures to measure the effect of the interventions on corticospinal excitability and cortical reorganization. Results: Results from the system?s recordings and clinical evaluation showed significantly greater functional recovery for the experimental group when compared with the control group (1.53, SD 2.4 in Chedoke Arm and Hand Activity Inventory). However, functional improvements did not reach clinical significance. After the therapy, physiological measures obtained from a subgroup of subjects revealed an increased corticospinal excitability for distal muscles driven by the pathological hemisphere, that is, abductor pollicis brevis. We also observed a displacement of the centroid of the cortical map for each tested muscle in the damaged hemisphere, which strongly correlated with improvements in clinical scales. Conclusions: These findings suggest that, in chronic stages, remote delivery of customized VR-based motor training promotes functional gains that are accompanied by neuroplastic changes. Trial Registration: International Standard Randomized Controlled Trial Number NCT02699398 (Archived by at

Keywords: Stroke, Movement disorder, Recovery of function, neuroplasticity, Transcranial magnetic stimulation, Physical therapy, Hemiparesis, Computer applications software

Urra, O., Casals, A., Jané, R., (2014). Evaluating spatial characteristics of upper-limb movements from EMG signals IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1795-1798

Stroke is a major cause of disability, usually causing hemiplegic damage on the motor abilities of the patient. Stroke rehabilitation seeks restoring normal motion on the affected limb. However, normality’ of movements is usually assessed by clinical and functional tests, without considering how the motor system responds to therapy. We hypothesized that electromyographic (EMG) recordings could provide useful information for evaluating the outcome of rehabilitation from a neuromuscular perspective. Four healthy subjects were asked to perform 14 different functional movements simulating the action of reaching over a table. Each movement was defined according to the starting and target positions that the subject had to connect using linear trajectories. Bipolar recordings of EMG signals were taken from biceps and triceps muscles, and spectral and temporal characteristics were extracted for each movement. Using pattern recognition techniques we found that only two EMG channels were sufficient to accurately determine the spatial characteristics of motor activity: movement direction, length and execution zone. Our results suggest that muscles may fire in a patterned way depending on the specific characteristics of the movement and that EMG signals may codify such detailed information. These findings may be of great value to quantitatively assess post-stroke rehabilitation and to compare the neuromuscular activity of the affected and unaffected limbs, from a physiological perspective. Furthermore, disturbed movements could be characterized in terms of the muscle function to identify, which is the spatial characteristic that fails, e.g. movement direction, and guide personalized rehabilitation to enhance the training of such characteristic.

Keywords: EMG, Movement spatial characteristics, Pattern recognition, Stroke rehabilitation, Upper-limb