Publications

by Keyword: Systolic time intervals


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Giraldo, B. F., Calvo, A., Martínez, B., Arcentales, A., Jané, R., Benito, S., (2014). Blood pressure variability analysis in supine and sitting position of healthy subjects IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 1021-1024

Blood pressure carries a great deal of information about people’s physical attributes. We analyzed the blood pressure signal in healthy subjects considering two positions, supine and sitting. 44 healthy subjects were studied. Parameters extracted from the blood pressure signal, related to time and frequency domain were used to compare the effect of postural position between supine and sitting. In time domain analysis, the time systolic interval and the time of blood pressure interval were higher in supine than in sitting position (p = 0.001 in both case). Parameters related to frequency peak, interquartile range, in frequency domain presented statistically significant difference (p < 0.0005 in both case). The blood pressure variability parameters presented smaller values in supine than in sitting position (p < 0.0005). In general, the position change of supine to sitting produces an increment in the pressure gradient inside heart, reflected in the blood pressure variability.

Keywords: Blood pressure variability, Systolic time intervals, Diastolic time intervals


Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798

Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.

Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis