Publications

by Keyword: Time series analysis


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Rodriguez, J., Voss, A., Caminal, P., Bayes-Genis, A., Giraldo, B. F., (2017). Characterization and classification of patients with different levels of cardiac death risk by using Poincaré plot analysis Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1332-1335

Cardiac death risk is still a big problem by an important part of the population, especially in elderly patients. In this study, we propose to characterize and analyze the cardiovascular and cardiorespiratory systems using the Poincaré plot. A total of 46 cardiomyopathy patients and 36 healthy subjets were analyzed. Left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF > 35%, 16 patients), and high risk (HR: LVEF ≤ 35%, 30 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, blood pressure and respiratory flow signals, respectively. Parameters that describe the scatterplott of Poincaré method, related to short- and long-term variabilities, acceleration and deceleration of the dynamic system, and the complex correlation index were extracted. The linear discriminant analysis (LDA) and the support vector machines (SVM) classification methods were used to analyze the results of the extracted parameters. The results showed that cardiac parameters were the best to discriminate between HR and LR groups, especially the complex correlation index (p = 0.009). Analising the interaction, the best result was obtained with the relation between the difference of the standard deviation of the cardiac and respiratory system (p = 0.003). When comparing HR vs LR groups, the best classification was obtained applying SVM method, using an ANOVA kernel, with an accuracy of 98.12%. An accuracy of 97.01% was obtained by comparing patients versus healthy, with a SVM classifier and Laplacian kernel. The morphology of Poincaré plot introduces parameters that allow the characterization of the cardiorespiratory system dynamics.

Keywords: Time series analysis, Electrocardiography, Support vector machines, Kernel, Standards, Correlation, RF signals


Schulz, S., Legorburu Cladera, B., Giraldo, B., Bolz, M., Bar, K. J., Voss, A., (2017). Neuronal desynchronization as marker of an impaired brain network Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 2251-2254

Synchronization is a central key feature of neural information processing and communication between different brain areas. Disturbance of oscillatory brain rhythms and decreased synchronization have been associated with different disorders including schizophrenia. The aim of this study was to investigate whether synchronization (in relaxed conditions with no stimuli) between different brain areas within the delta, theta, alpha (alpha1, alpha2), beta (beta1, beta2), and gamma bands is altered in patients with a neurological disorder in order to generate significant cortical enhancements. To achieve this, we investigated schizophrenic patients (SZO; N=17, 37.5±10.4 years, 15 males) and compared them to healthy subjects (CON; N=21, 36.7±13.4 years, 15 males) applying the phase locking value (PLV). We found significant differences between SZO and CON in different brain areas of the theta, alpha1, beta2 and gamma bands. These areas are related to the central and parietal lobes for the theta band, the parietal lobe for the alpha1, the parietal and frontal for the beta2 and the frontal-central for the gamma band. The gamma band revealed the most significant differences between CON and SZO. PLV were 61.7% higher on average in SZO in most of the clusters when compared to CON. The related brain areas are directly related to cognition skills which are proved to be impaired in SZO. The results of this study suggest that synchronization in SZO is also altered when the patients were not asked to perform a task that requires their cognitive skills (i.e., no stimuli are applied - in contrast to other findings).

Keywords: Synchronization, Electroencephalography, Electrodes, Brain, Time series analysis, Oscillators, Frequency synchronization


Trapero, J. I., Arizmendi, C. J., Gonzalez, H., Forero, C., Giraldo, B. F., (2017). Nonlinear dynamic analysis of the cardiorespiratory system in patients undergoing the weaning process Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 3493-3496

In this work, the cardiorespiratory pattern of patients undergoing extubation process is studied. First, the respiratory and cardiac signals were resampled, next the Symbolic Dynamics (SD) technique was implemented, followed of a dimensionality reduction applying Forward Selection (FS) and Moving Window with Variance Analysis (MWVA) methods. Finally, the Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM) classifiers were used. The study analyzed 153 patients undergoing weaning process, classified into 3 groups: Successful Group (SG: 94 patients), Failed Group (FG: 39 patients), and patients who had been successful during the extubation and had to be reintubated before 48 hours, Reintubated Group (RG: 21 patients). According to the results, the best classification present an accuracy higher than 88.98 ± 0.013% in all proposed combinations.

Keywords: Support vector machines, Standards, Time series analysis, Resonant frequency, Nonlinear dynamical systems, Ventilation


Giraldo, B. F., Rodriguez, J., Caminal, P., Bayes-Genis, A., Voss, A., (2015). Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 306-309

Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyophaty patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyophaties were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopaties, obtaining an accuracy of 85.7%.

Keywords: Blood pressure, Electrocardiography, Joints, Kernel, Principal component analysis, Support vector machines, Time series analysis


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2015). Respiratory signal derived from the smartphone built-in accelerometer during a Respiratory Load Protocol Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 6768-6771

The scope of our work focuses on investigating the potential use of the built-in accelerometer of the smartphones for the recording of the respiratory activity and deriving the respiratory rate. Five healthy subjects performed an inspiratory load protocol. The excursion of the right chest was recorded using the built-in triaxial accelerometer of a smartphone along the x, y and z axes and with an external uniaxial accelerometer. Simultaneously, the respiratory airflow and the inspiratory mouth pressure were recorded, as reference respiratory signals. The chest acceleration signal recorded in the z axis with the smartphone was denoised using a scheme based on the ensemble empirical mode decomposition, a noise data assisted method which decomposes nonstationary and nonlinear signals into intrinsic mode functions. To distinguish noisy oscillatory modes from the relevant modes we use the detrended fluctuation analysis. We reported a very strong correlation between the acceleration of the z axis of the smartphone and the reference accelerometer across the inspiratory load protocol (from 0.80 to 0.97). Furthermore, the evaluation of the respiratory rate showed a very strong correlation (0.98). A good agreement was observed between the respiratory rate estimated with the chest acceleration signal from the z axis of the smartphone and with the respiratory airflow signal: Bland-Altman limits of agreement between -1.44 and 1.46 breaths per minute with a mean bias of -0.01 breaths per minute. This preliminary study provides a valuable insight into the use of the smartphone and its built-in accelerometer for respiratory monitoring.

Keywords: Acceleration, Accelerometers, Correlation, Empirical mode decomposition, Fluctuations, Protocols, Time series analysis


Tellez, J. P., Herrera, S., Benito, S., Giraldo, B. F., (2014). Analysis of the breathing pattern in elderly patients using the hurst exponent applied to the respiratory flow signal Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3422-3425

Due to the increasing elderly population and the extensive number of comorbidities that affect them, studies are required to determine future increments in admission to emergency departments. Some of these studies could focus on the relation between chronic diseases and breathing pattern in elderly patients. Variations in the fractal properties of respiratory signals can be associated with several diseases. To determine the relationship between these variations and breathing patterns, and to quantify the fractal properties of respiratory flow signals, we estimated the Hurst exponent (H). Detrended fluctuation analysis (DFA) and discrete wavelet transform-based estimation (DWTE) methods were applied. The estimation methods were analyzed using simulated data series generated by fractional Gaussian noise. 43 elderly patients (19 patients with a non-periodic breathing pattern - nPB, and 24 patients with a periodic breathing pattern - PB) were studied. The results were evaluated according to the length of data and the number of averaged data series used to obtain a good estimation. The DWTE method estimated the respiratory flow signals better than the DFA method, and obtained Hurst values clustered by group. We found significant differences in the H exponent (p = 0.002) between PB and nPB patients, which showed different behavior in the fractal properties.

Keywords: Discrete wavelet transforms, Diseases, Estimation, Fractals, Modulation, Senior citizens, Time series analysis


Giraldo, B. F., Chaparro, J. A., Caminal, P., Benito, S., (2013). Characterization of the respiratory pattern variability of patients with different pressure support levels Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 3849-3852

One of the most challenging problems in intensive care is still the process of discontinuing mechanical ventilation, called weaning process. Both an unnecessary delay in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we analyzed respiratory pattern variability using the respiratory volume signal of patients submitted to two different levels of pressure support ventilation (PSV), prior to withdrawal of the mechanical ventilation. In order to characterize the respiratory pattern, we analyzed the following time series: inspiratory time, expiratory time, breath duration, tidal volume, fractional inspiratory time, mean inspiratory flow and rapid shallow breathing. Several autoregressive modeling techniques were considered: autoregressive models (AR), autoregressive moving average models (ARMA), and autoregressive models with exogenous input (ARX). The following classification methods were used: logistic regression (LR), linear discriminant analysis (LDA) and support vector machines (SVM). 20 patients on weaning trials from mechanical ventilation were analyzed. The patients, submitted to two different levels of PSV, were classified as low PSV and high PSV. The variability of the respiratory patterns of these patients were analyzed. The most relevant parameters were extracted using the classifiers methods. The best results were obtained with the interquartile range and the final prediction errors of AR, ARMA and ARX models. An accuracy of 95% (93% sensitivity and 90% specificity) was obtained when the interquartile range of the expiratory time and the breath duration time series were used a LDA model. All classifiers showed a good compromise between sensitivity and specificity.

Keywords: autoregressive moving average processes, feature extraction, medical signal processing, patient care, pneumodynamics, signal classification, support vector machines, time series, ARX, autoregressive modeling techniques, autoregressive models with exogenous input, autoregressive moving average model, breath duration time series, classification method, classifier method, discontinuing mechanical ventilation, expiratory time, feature extraction, final prediction errors, fractional inspiratory time, intensive care, interquartile range, linear discriminant analysis, logistic regression analysis, mean inspiratory flow, patient respiratory volume signal, pressure support level, pressure support ventilation, rapid shallow breathing, respiratory pattern variability characterization, support vector machines, tidal volume, weaning trial, Analytical models, Autoregressive processes, Biological system modeling, Estimation, Support vector machines, Time series analysis, Ventilation


Chaparro, J.A., Giraldo, B.F., Caminal, P., Benito, S., (2012). Performance of respiratory pattern parameters in classifiers for predict weaning process Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 4349-4352

Weaning trials process of patients in intensive care units is a complex clinical procedure. 153 patients under extubation process (T-tube test) were studied: 94 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 21 patients with successful test but that had to be reintubated before 48 hours (group R). The respiratory pattern of each patient was characterized through the following time series: inspiratory time (TI), expiratory time (TE), breathing cycle duration (TTot), tidal volume (VT), inspiratory fraction (TI/TTot), half inspired flow (VT/TI), and rapid shallow index (f/VT), where f is respiratory rate. Using techniques as autoregressive models (AR), autoregressive moving average models (ARMA) and autoregressive models with exogenous input (ARX), the most relevant parameters of the respiratory pattern were obtained. We proposed the evaluation of these parameters using classifiers as logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM) and classification and regression tree (CART) to discriminate between patients from groups S, F and R. An accuracy of 93% (98% sensitivity and 82% specificity) has been obtained using CART classification.

Keywords: Accuracy, Indexes, Logistics, Regression tree analysis, Support vector machines, Time series analysis, Autoregressive moving average processes, Medical signal processing, Pattern classification, Pneumodynamics, Regression analysis, Sensitivity, Signal classification, Support vector machines, Time series, SVM, T-tube testing, Autoregressive models-with-exogenous input, Autoregressive moving average models, Breathing cycle duration, Classification-and-regression tree, Expiratory time, Extubation process, Half inspired flow, Inspiratory fraction, Inspiratory time, Intensive care units, Linear discriminant analysis, Logistic regression, Rapid shallow index, Respiratory pattern parameter performance, Sensitivity, Spontaneous breathing, Support vector machines, Tidal volume, Time 48 hr, Time series, Weaning process classifiers