Publications

by Keyword: Time series from respiratory signals


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Gonzalez, H., Acevedo, H., Arizmendi, C., Giraldo, B. F., (2013). Methodology for determine the moment of disconnection of patients of the mechanical ventilation using discrete wavelet transform Complex Medical Engineering (CME) 2013 ICME International Conference , IEEE (Beijing, China) , 483-486

The process of weaning from mechanical ventilation is one of the challenges in intensive care units. 66 patients under extubation process (T-tube test) were studied: 33 patients with successful trials and 33 patients who failed to maintain spontaneous breathing and were reconnected. Each patient was characterized using 7 time series from respiratory signals, and for each serie was evaluated the discrete wavelet transform. It trains a neural network for discriminating between patients from the two groups.

Keywords: discrete wavelet transforms, neural nets, patient treatment, pneumodynamics, time series, ventilation, T-tube test, discrete wavelet transform, extubation process, intensive care units, mechanical ventilation, moment of disconnection, neural network, patients, respiratory signals, spontaneous breathing, time series, weaning, Mechanical Ventilation, Neural Networks, Time series from respiratory signals, Wavelet Transform