Publications

by Keyword: Training data


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Argerich, S., Herrera, S., Benito, S., Giraldo, J., (2016). Evaluation of periodic breathing in respiratory flow signal of elderly patients using SVM and linear discriminant analysis Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 4276-4279

Aging population is a major concern that is reflected in the increase of chronic diseases. Heart Failure (HF) is one of the most common chronic diseases of elderly people that is punctuated with acute episodes, which result in hospitalization. The periodic modulation of the amplitude of the breathing pattern is proved to be one of the multiple symptoms of an acute episode, and thus, the features extracted from its characterization contribute in the improvement of the first diagnosis of the clinical practice. The main objective of this study is to evaluate if the features extracted from the breathing pattern along with common clinical variables are reliable enough to detect Periodic Breathing (PB). A dataset of 44 elderly patients containing clinical information and a short record of electrocardiogram and respiratory flow signal was used to train two machine learning classification methods: Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). All the available clinical parameters within the dataset along with the parameters characterizing the respiratory pattern were used to classify the observations into two groups. SVM classification was optimized and performed using a = -8 and C = 10.04 giving an accuracy of 88.2 % sensitivity of 90 % and specificity of 85.7 % Similar results were achieved with LDA classifying with an accuracy of 82.4 %, a sensitivity of 81.8% and specificity of 83.3 % PB has been accurately detected using both classifiers.

Keywords: Support vector machines, Feature extraction, Training, Senior citizens, Standards, Training data, Hospitals