Staff member


Arnau Hervera Abad

Postdoctoral Researcher
Molecular and Cellular Neurobiotechnology
ahervera@ibecbarcelona.eu
+34 93 403 11 85
Staff member publications

Palmisano, I., Danzi, M. C., Hutson, T. H., Zhou, L., McLachlan, E., Serger, E., Shkura, K., Srivastava, P. K., Hervera, A., Neill, N. O., Liu, T., Dhrif, H., Wang, Z., Kubat, M., Wuchty, S., Merkenschlager, M., Levi, L., Elliott, E., Bixby, J. L., Lemmon, V. P., Di Giovanni, S., (2019). Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons Nature Neuroscience 22, (11), 1913-1924

Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.

Keywords: Cell biology, Computational biology and bioinformatics, Molecular biology, Neuroscience


Hervera, Arnau, Santos, Celio X., De Virgiliis, Francesco, Shah, Ajay M., Di Giovanni, Simone, (2019). Paracrine mechanisms of redox signalling for postmitotic cell and tissue regeneration Trends in Cell Biology 29, (6), 514-530

Adult postmitotic mammalian cells, including neurons and cardiomyocytes, have a limited capacity to regenerate after injury. Therefore, an understanding of the molecular mechanisms underlying their regenerative ability is critical to advance tissue repair therapies. Recent studies highlight how redox signalling via paracrine cell-to-cell communication may act as a central mechanism coupling tissue injury with regeneration. Post-injury redox paracrine signalling can act by diffusion to nearby cells, through mitochondria or within extracellular vesicles, affecting specific intracellular targets such as kinases, phosphatases, and transcription factors, which in turn trigger a regenerative response. Here, we review redox paracrine signalling mechanisms in postmitotic tissue regeneration and discuss current challenges and future directions.


Hervera, A., Zhou, L., Palmisano, I., McLachlan, E., Kong, G., Hutson, T. H., Danzi, M. C., Lemmon, V. P., Bixby, J. L., Matamoros-Angles, A., Forsberg, K., De Virgiliis, F., Matheos, D. P., Kwapis, J., Wood, M. A., Puttagunta, R., del Río, J. A., Di Giovanni, S., (2019). PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure EMBO Journal 38, (13), e101032

The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.

Keywords: Calcium, HDAC3, Nerve regeneration, Spinal cord injury, Transcription


Hervera, A., De Virgiliis, F., Palmisano, I., Zhou, L., Tantardini, E., Kong, G., Hutson, T., Danzi, M. C., Perry, R. B. T., Santos, C. X. C., Kapustin, A. N., Fleck, R. A., Del Río, J. A., Carroll, T., Lemmon, V., Bixby, J. L., Shah, A. M., Fainzilber, M., Di Giovanni, S., (2018). Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons Nature Cell Biology 20, (3), 307-319

Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-β1–dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K–phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2–PI3K–p-Akt signalling pathway.

Keywords: Adult neurogenesis, Endocytosis, Exocytosis, Monocytes and macrophages, Stress signalling


Badiola-Mateos, M., Hervera, A., del Río, J. A., Samitier, J., (2018). Challenges and future prospects on 3D in-vitro modeling of the neuromuscular circuit Frontiers in Bioengineering and Biotechnology 6, Article 194

Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.

Keywords: 3D-culture, Compartmentalized microfluidic culture systems (cμFCS), HiPSC, In-vitro models, Neuromuscular circuit


Urrea, L., Segura, Miriam, Masuda-Suzukake, M., Hervera, A., Pedraz, L., Aznar, J. M. G., Vila, M., Samitier, J., Torrents, E., Ferrer, Isidro, Gavín, R., Hagesawa, M., Del Río, J. A., (2018). Involvement of cellular prion protein in α-synuclein transport in neurons Molecular Neurobiology 55, (3), 1847-1860

The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrPC-overexpressing mice.

Keywords: Amyloid spreading, Microfluidic devices, Prnp, Synuclein


Matamoros-Angles, A., Gayosso, L. M., Richaud-Patin, Y., Di Domenico, A., Vergara, C., Hervera, A., Sousa, A., Fernández-Borges, N., Consiglio, A., Gavín, R., López de Maturana, R., Ferrer, Isidro, López de Munain, A., Raya, A., Castilla, J., Sánchez-Pernaute, R., Del Río, J. A., (2018). iPS cell cultures from a Gerstmann-Sträussler-Scheinker patient with the Y218N PRNP mutation recapitulate tau pathology Molecular Neurobiology 55, (4), 3033-3048

Gerstmann-Sträussler-Scheinker (GSS) syndrome is a fatal autosomal dominant neurodegenerative prionopathy clinically characterized by ataxia, spastic paraparesis, extrapyramidal signs and dementia. In some GSS familiar cases carrying point mutations in the PRNP gene, patients also showed comorbid tauopathy leading to mixed pathologies. In this study we developed an induced pluripotent stem (iPS) cell model derived from fibroblasts of a GSS patient harboring the Y218N PRNP mutation, as well as an age-matched healthy control. This particular PRNP mutation is unique with very few described cases. One of the cases presented neurofibrillary degeneration with relevant Tau hyperphosphorylation. Y218N iPS-derived cultures showed relevant astrogliosis, increased phospho-Tau, altered microtubule-associated transport and cell death. However, they failed to generate proteinase K-resistant prion. In this study we set out to test, for the first time, whether iPS cell-derived neurons could be used to investigate the appearance of disease-related phenotypes (i.e, tauopathy) identified in the GSS patient.

Keywords: Cellular prion protein, Gerstmann-Sträussler-Scheinker, Induced pluripotent stem cells, Tau


Badiola, M., Hervera, A., López, J., Segura, Miriam, del Río, J. A., Samitier, J., (2017). In-vitro Peripheral Nervous System on a chip CASEIB Proceedings XXXV Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2017) , Sociedad Española de Ingeniería Biomédica (Valencia, Spain) , XXXX (falta pdf)