Staff member


Tania Patiño Padial

Visiting Researcher
Smart Nano-Bio-Devices
tpatino@ibecbarcelona.eu
+34 934 031 392
Staff member publications

De Corato, Marco, Arqué, Xavier, Patiño, Tania, Arroyo, Marino, Sánchez, Samuel, Pagonabarraga, Ignacio, (2020). Self-propulsion of active colloids via ion release: Theory and experiments Physical Review Letters 124, (10), 108001

We study the self-propulsion of a charged colloidal particle that releases ionic species using theory and experiments. We relax the assumptions of thin Debye length and weak nonequilibrium effects assumed in classical phoretic models. This leads to a number of unexpected features that cannot be rationalized considering the classic phoretic framework: an active particle can reverse the direction of motion by increasing the rate of ion release and can propel even with zero surface charge. Our theory predicts that there are optimal conditions for self-propulsion and a novel regime in which the velocity is insensitive to the background electrolyte concentration. The theoretical results quantitatively capture the salt-dependent velocity measured in our experiments using active colloids that propel by decomposing urea via a surface enzymatic reaction.


Hortelão, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano 13, (1), 429-439

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting


Arqué, Xavier, Romero-Rivera, Adrian, Feixas, Ferran, Patiño, Tania, Osuna, Sílvia, Sánchez, Samuel, (2019). Intrinsic enzymatic properties modulate the self-propulsion of micromotors Nature Communications 10, (1), 2826

Bio-catalytic micro- and nanomotors self-propel by the enzymatic conversion of substrates into products. Despite the advances in the field, the fundamental aspects underlying enzyme-powered self-propulsion have rarely been studied. In this work, we select four enzymes (urease, acetylcholinesterase, glucose oxidase, and aldolase) to be attached on silica microcapsules and study how their turnover number and conformational dynamics affect the self-propulsion, combining both an experimental and molecular dynamics simulations approach. Urease and acetylcholinesterase, the enzymes with higher catalytic rates, are the only enzymes capable of producing active motion. Molecular dynamics simulations reveal that urease and acetylcholinesterase display the highest degree of flexibility near the active site, which could play a role on the catalytic process. We experimentally assess this hypothesis for urease micromotors through competitive inhibition (acetohydroxamic acid) and increasing enzyme rigidity (β-mercaptoethanol). We conclude that the conformational changes are a precondition of urease catalysis, which is essential to generate self-propulsion.

Keywords: Biocatalysis, Immobilized enzymes, Molecular machines and motors


Patiño, Tania, Porchetta, Alessandro, Jannasch, Anita, Lladó, Anna, Stumpp, Tom, Schäffer, Erik, Ricci, Francesco, Sánchez, Samuel, (2019). Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches Nano Letters 19, (6), 3440-3447

Biocatalytic micro- and nanomotors have emerged as a new class of active matter self-propelled through enzymatic reactions. The incorporation of functional nanotools could enable the rational design of multifunctional micromotors for simultaneous real-time monitoring of their environment and activity. Herein, we report the combination of DNA nanotechnology and urease-powered micromotors as multifunctional tools able to swim, simultaneously sense the pH of their surrounding environment, and monitor their intrinsic activity. With this purpose, a FRET-labeled triplex DNA nanoswitch for pH sensing was immobilized onto the surface of mesoporous silica-based micromotors. During self-propulsion, urea decomposition and the subsequent release of ammonia led to a fast pH increase, which was detected by real-time monitoring of the FRET efficiency through confocal laser scanning microscopy at different time points (i.e., 30 s, 2 and 10 min). Furthermore, the analysis of speed, enzymatic activity, and propulsive force displayed a similar exponential decay, matching the trend observed for the FRET efficiency. These results illustrate the potential of using specific DNA nanoswitches not only for sensing the micromotors’ surrounding microenvironment but also as an indicator of the micromotor activity status, which may aid to the understanding of their performance in different media and in different applications.

Keywords: Micromotors, DNA-nanoswitch, pH detection, Self-propulsion, Nanosensors, Nanomotors


Mestre, Rafael, Patiño, Tania, Barceló, Xavier, Anand, Shivesh, Pérez-Jiménez, Ariadna, Sánchez, Samuel, (2019). Force modulation and adaptability of 3D-bioprinted biological actuators based on skeletal muscle tissue Advanced Materials Technologies 4, (2), 1800631

Abstract The integration of biological systems into robotic devices might provide them with capabilities acquired from natural systems and significantly boost their performance. These abilities include real-time bio-sensing, self-organization, adaptability, or self-healing. As many muscle-based bio-hybrid robots and bio-actuators arise in the literature, the question of whether these features can live up to their expectations becomes increasingly substantial. Herein, the force generation and adaptability of skeletal-muscle-based bio-actuators undergoing long-term training protocols are analyzed. The 3D-bioprinting technique is used to fabricate bio-actuators that are functional, responsive, and have highly aligned myotubes. The bio-actuators are 3D-bioprinted together with two artificial posts, allowing to use it as a force measuring platform. In addition, the force output evolution and dynamic gene expression of the bio-actuators are studied to evaluate their degree of adaptability according to training protocols of different frequencies and mechanical stiffness, finding that their force generation could be modulated to different requirements. These results shed some light into the fundamental mechanisms behind the adaptability of muscle-based bio-actuators and highlight the potential of using 3D bioprinting as a rapid and cost-effective tool for the fabrication of custom-designed soft bio-robots.


Mestre, R., Patiño, T., Guix, M., Barceló, X., Sánchez, S., (2019). Design, optimization and characterization of bio-hybrid actuators based on 3D-bioprinted skeletal muscle tissue Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019 (Lecture Notes in Computer Science) , Springer International Publishing (Nara, Japan) 11556, 205-215

The field of bio-hybrid robotics aims at the integration of biological components with artificial materials in order to take advantage of many unique features occurring in nature, such as adaptability, self-healing or resilience. In particular, skeletal muscle tissue has been used to fabricate bio-actuators or bio-robots that can perform simple actions. In this paper, we present 3D bioprinting as a versatile technique to develop these kinds of actuators and we focus on the importance of optimizing the designs and properly characterizing their performance. For that, we introduce a method to calculate the force generated by the bio-actuators based on the deflection of two posts included in the bio-actuator design by means of image processing algorithms. Finally, we present some results related to the adaptation, controllability and force modulation of our bio-actuators, paving the way towards a design- and optimization-driven development of more complex 3D-bioprinted bio-actuators.

Keywords: 3D bioprinting, Bio-hybrid robotics, Muscle-based bio-actuators


Patiño, Tania, Arqué, Xavier, Mestre, Rafael, Palacios, Lucas, Sánchez, Samuel, (2018). Fundamental aspects of enzyme-powered micro- and nanoswimmers Accounts of Chemical Research 51, (11), 2662–2671

ConspectusSelf-propulsion at the nanoscale constitutes a challenge due to the need for overcoming viscous forces and Brownian motion. Inspired by nature, artificial micro- and nanomachines powered by catalytic reactions have been developed. Due to the toxicity of the most commonly used fuels, enzyme catalysis has emerged as a versatile and biocompatible alternative to generate self-propulsion. Different swimmer sizes, ranging from the nanoscale to the microscale, and geometries, including tubular and spherical shapes, have been explored. However, there is still a lack of understanding of the mechanisms underlying enzyme-mediated propulsion. Size, shape, enzyme quantity and distribution, as well as the intrinsic enzymatic properties, may play crucial roles in motion dynamics.In this Account, we present the efforts carried out by our group and others by the community on the use of enzymes to power micro- and nanoswimmers. We examine the different structures, materials, and enzymes reported so far to fabricate biocatalytic micro- and nanoswimmers with special emphasis on their effect in motion dynamics. We discuss the development of tubular micro- and nanojets, focusing on the different fabrication methods and the effect of length and enzyme localization on their motion behavior. In the case of spherical swimmers, we highlight the role of asymmetry in enzyme coverage and how it can affect their motion dynamics. Different approaches have been described to generate asymmetric distribution of enzymes, namely, Janus particles, polymeric vesicles, and non-Janus particles with patch-like enzyme distribution that we recently reported. We also examine the correlation between enzyme kinetics and active motion. Enzyme activity, and consequently speed, can be modulated by modifying substrate concentration or adding specific inhibitors. Finally, we review the theory of active Brownian motion and how the size of the particles can influence the analysis of the results. Fundamentally, nanoscaled swimmers are more affected by Brownian fluctuations than microsized swimmers, and therefore, their motion is presented as an enhanced diffusion with respect to the passive case. Microswimmers, however, can overcome these fluctuations and show propulsive or ballistic trajectories. We provide some considerations on how to analyze the motion of these swimmers from an experimental point of view. Despite the rapid progress in enzyme-based micro- and nanoswimmers, deeper understanding of the mechanisms of motion is needed, and further efforts should be aimed to study their lifetime, long-term stability, and ability to navigate in complex media.


Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, A., Sánchez, S., (2018). Enzyme-powered nanobots enhance anticancer drug delivery Advanced Functional Materials 28, 1705086

The use of enzyme catalysis to power micro- and nanomotors exploiting biocompatible fuels has opened new ventures for biomedical applications such as the active transport and delivery of specific drugs to the site of interest. Here, urease-powered nanomotors (nanobots) for doxorubicin (Dox) anticancer drug loading, release, and efficient delivery to cells are presented. These mesoporous silica-based core-shell nanobots are able to self-propel in ionic media, as confirmed by optical tracking and dynamic light scattering analysis. A four-fold increase in drug release is achieved by nanobots after 6 h compared to their passive counterparts. Furthermore, the use of Dox-loaded nanobots presents an enhanced anticancer efficiency toward HeLa cells, which arises from a synergistic effect of the enhanced drug release and the ammonia produced at high concentrations of urea substrate. A higher content of Dox inside HeLa cells is detected after 1, 4, 6, and 24 h incubation with active nanobots compared to passive Dox-loaded nanoparticles. The improvement in drug delivery efficiency achieved by enzyme-powered nanobots may hold potential toward their use in future biomedical applications such as the substrate-triggered release of drugs in target locations.

Keywords: Drug delivery, Enzymatic catalysis, Nanobots, Nanomachines, Nanomotors


Patiño, Tania, Feiner-Gracia, Natalia, Arqué, Xavier, Miguel-López, Albert, Jannasch, Anita, Stumpp, Tom, Schäffer, Erik, Albertazzi, Lorenzo, Sánchez, Samuel, (2018). Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors Journal of the American Chemical Society 140, (25), 7896-7903

The use of enzyme catalysis to power micro- and nanomachines offers unique features such as biocompatibility, versatility, and fuel bioavailability. Yet, the key parameters underlying the motion behavior of enzyme-powered motors are not completely understood. Here, we investigate the role of enzyme distribution and quantity on the generation of active motion. Two different micromotor architectures based on either polystyrene (PS) or polystyrene coated with a rough silicon dioxide shell (PS@SiO2) were explored. A directional propulsion with higher speed was observed for PS@SiO2 motors when compared to their PS counterparts. We made use of stochastically optical reconstruction microscopy (STORM) to precisely detect single urease molecules conjugated to the micromotors surface with a high spatial resolution. An asymmetric distribution of enzymes around the micromotor surface was observed for both PS and PS@SiO2 architectures, indicating that the enzyme distribution was not the only parameter affecting the motion behavior. We quantified the number of enzymes present on the micromotor surface and observed a 10-fold increase in the number of urease molecules for PS@SiO2 motors compared to PS-based micromotors. To further investigate the number of enzymes required to generate a self-propulsion, PS@SiO2 particles were functionalized with varying amounts of urease molecules and the resulting speed and propulsive force were measured by optical tracking and optical tweezers, respectively. Surprisingly, both speed and force depended in a nonlinear fashion on the enzyme coverage. To break symmetry for active propulsion, we found that a certain threshold number of enzymes molecules per micromotor was necessary, indicating that activity may be due to a critical phenomenon. Taken together, these results provide new insights into the design features of micro/nanomotors to ensure an efficient development.


Mestre, Rafael, Patiño, Tania, Barceló, Xavier, Sanchez, Samuel, (2018). 3D Bioprinted muscle-based bio-actuators: Force adaptability due to training Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018 (Lecture Notes in Computer Science) , Springer International Publishing (Paris, France) 10928, 316-320

The integration of biological tissue and artificial materials plays a fundamental role in the development of biohybrid soft robotics, a subfield in the field of soft robotics trying to achieve a higher degree of complexity by taking advantage of the exceptional capabilities of biological systems, like self-healing or responsiveness to external stimuli. In this work, we present a proof-of-concept 3D bioprinted bio-actuator made of skeletal muscle tissue and PDMS, which can act as a force measuring platform. The 3D bioprinting technique, which has not been used for the development of bio-actuators, offers unique versatility by allowing a simple, biocompatible and fast fabrication of hybrid multi-component systems. Furthermore, we prove controllability of contractions and functionality of the bio-actuator after applying electric pulses by measuring the exerted forces. We observe an increased force output in time, suggesting improved maturation of the tissue, opening up possibilities for force adaptability or modulation due to prolonged electrical stimuli.


Ma, Xing, Horteläo, Ana C., Patiño, Tania, Sánchez, Samuel, (2016). Enzyme catalysis to power micro/nanomachines ACS Nano 10, (10), 9111–9122

Enzymes play a crucial role in many biological processes which require harnessing and converting free chemical energy into kinetic forces in order to accomplish tasks. Enzymes are considered to be molecular machines, not only because of their capability of energy conversion in biological systems but also because enzymatic catalysis can result in enhanced diffusion of enzymes at a molecular level. Enlightened by nature’s design of biological machinery, researchers have investigated various types of synthetic micro/nanomachines by using enzymatic reactions to achieve self-propulsion of micro/nanoarchitectures. Yet, the mechanism of motion is still under debate in current literature. Versatile proof-of-concept applications of these enzyme-powered micro/nanodevices have been recently demonstrated. In this review, we focus on discussing enzymes not only as stochastic swimmers but also as nanoengines to power self-propelled synthetic motors. We present an overview on different enzyme-powered micro/nanomachines, the current debate on their motion mechanism, methods to provide motion and speed control, and an outlook of the future potentials of this multidisciplinary field.