Staff member

Rafael Mestre Castillo

PhD Student
Smart Nano-Bio-Devices
+34 934020515
Staff member publications

Patiño, Tania, Arqué, Xavier, Mestre, Rafael, Palacios, Lucas, Sánchez, Samuel, (2018). Fundamental aspects of enzyme-powered micro- and nanoswimmers Accounts of Chemical Research Article ASAP

ConspectusSelf-propulsion at the nanoscale constitutes a challenge due to the need for overcoming viscous forces and Brownian motion. Inspired by nature, artificial micro- and nanomachines powered by catalytic reactions have been developed. Due to the toxicity of the most commonly used fuels, enzyme catalysis has emerged as a versatile and biocompatible alternative to generate self-propulsion. Different swimmer sizes, ranging from the nanoscale to the microscale, and geometries, including tubular and spherical shapes, have been explored. However, there is still a lack of understanding of the mechanisms underlying enzyme-mediated propulsion. Size, shape, enzyme quantity and distribution, as well as the intrinsic enzymatic properties, may play crucial roles in motion dynamics.In this Account, we present the efforts carried out by our group and others by the community on the use of enzymes to power micro- and nanoswimmers. We examine the different structures, materials, and enzymes reported so far to fabricate biocatalytic micro- and nanoswimmers with special emphasis on their effect in motion dynamics. We discuss the development of tubular micro- and nanojets, focusing on the different fabrication methods and the effect of length and enzyme localization on their motion behavior. In the case of spherical swimmers, we highlight the role of asymmetry in enzyme coverage and how it can affect their motion dynamics. Different approaches have been described to generate asymmetric distribution of enzymes, namely, Janus particles, polymeric vesicles, and non-Janus particles with patch-like enzyme distribution that we recently reported. We also examine the correlation between enzyme kinetics and active motion. Enzyme activity, and consequently speed, can be modulated by modifying substrate concentration or adding specific inhibitors. Finally, we review the theory of active Brownian motion and how the size of the particles can influence the analysis of the results. Fundamentally, nanoscaled swimmers are more affected by Brownian fluctuations than microsized swimmers, and therefore, their motion is presented as an enhanced diffusion with respect to the passive case. Microswimmers, however, can overcome these fluctuations and show propulsive or ballistic trajectories. We provide some considerations on how to analyze the motion of these swimmers from an experimental point of view. Despite the rapid progress in enzyme-based micro- and nanoswimmers, deeper understanding of the mechanisms of motion is needed, and further efforts should be aimed to study their lifetime, long-term stability, and ability to navigate in complex media.

Xuan, Mingjun, Mestre, Rafael, Gao, Changyong, Zhou, Chang, He, Qiang, Sánchez, Samuel, (2018). Noncontinuous super-diffusive dynamics of a light-activated nanobottle motor Angewandte Chemie International Edition 57, (23), 6838-6842

Abstract We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light-driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft-template-based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light-driven jet propulsion. This NIR light-powered CNB motor exhibits fuel-free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications.

Mestre, Rafael, Patiño, Tania, Barceló, Xavier, Sanchez, Samuel, (2018). 3D Bioprinted muscle-based bio-actuators: Force adaptability due to training Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018 (Lecture Notes in Computer Science) , Springer International Publishing (Paris, France) 10928, 316-320

The integration of biological tissue and artificial materials plays a fundamental role in the development of biohybrid soft robotics, a subfield in the field of soft robotics trying to achieve a higher degree of complexity by taking advantage of the exceptional capabilities of biological systems, like self-healing or responsiveness to external stimuli. In this work, we present a proof-of-concept 3D bioprinted bio-actuator made of skeletal muscle tissue and PDMS, which can act as a force measuring platform. The 3D bioprinting technique, which has not been used for the development of bio-actuators, offers unique versatility by allowing a simple, biocompatible and fast fabrication of hybrid multi-component systems. Furthermore, we prove controllability of contractions and functionality of the bio-actuator after applying electric pulses by measuring the exerted forces. We observe an increased force output in time, suggesting improved maturation of the tissue, opening up possibilities for force adaptability or modulation due to prolonged electrical stimuli.

Patino, T., Mestre, R., Sánchez, S., (2016). Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications Lab on a Chip 16, (19), 3626-3630

Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other fields.