Staff member

Martina Maier

PhD Student
Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS)

Staff member publications

Maier, Martina, Ballester, Belén Rubio, Leiva Bañuelos, Nuria, Duarte Oller, Esther, Verschure, P., (2020). Adaptive conjunctive cognitive training (ACCT) in virtual reality for chronic stroke patients: a randomized controlled pilot trial Journal of NeuroEngineering and Rehabilitation 17, (1), 42

Current evidence for the effectiveness of post-stroke cognitive rehabilitation is weak, possibly due to two reasons. First, patients typically express cognitive deficits in several domains. Therapies focusing on specific cognitive deficits might not address their interrelated neurological nature. Second, co-occurring psychological problems are often neglected or not diagnosed, although post-stroke depression is common and related to cognitive deficits. This pilot trial aims to test a rehabilitation program in virtual reality that trains various cognitive domains in conjunction, by adapting to the patient’s disability and while investigating the influence of comorbidities.

Ballester, B. R., Maier, M., Duff, A., Cameirão, M., Bermúdez, S., Duarte, E., Cuxart, A., Rodríguez, S., San Segundo Mozo, R. M., Verschure, P., (2019). A critical time window for recovery extends beyond one-year post-stroke Journal of neurophysiology Journal of Neurophysiology , 122, (1), 350-357

The impact of rehabilitation on post-stroke motor recovery and its dependency on the patient's chronicity remain unclear. The field has widely accepted the notion of a proportional recovery rule with a "critical window for recovery" within the first 3-6 mo poststroke. This hypothesis justifies the general cessation of physical therapy at chronic stages. However, the limits of this critical window have, so far, been poorly defined. In this analysis, we address this question, and we further explore the temporal structure of motor recovery using individual patient data from a homogeneous sample of 219 individuals with mild to moderate upper-limb hemiparesis. We observed that improvement in body function and structure was possible even at late chronic stages. A bootstrapping analysis revealed a gradient of enhanced sensitivity to treatment that extended beyond 12 mo poststroke. Clinical guidelines for rehabilitation should be revised in the context of this temporal structure. NEW & NOTEWORTHY Previous studies in humans suggest that there is a 3- to 6-mo "critical window" of heightened neuroplasticity poststroke. We analyze the temporal structure of recovery in patients with hemiparesis and uncover a precise gradient of enhanced sensitivity to treatment that expands far beyond the limits of the so-called critical window. These findings highlight the need for providing therapy to patients at the chronic and late chronic stages.

Keywords: Motor recovery, Neuroplasticity, Neurorehabilitation, Stroke recovery, Virtual reality

Maier, Martina, Rubio Ballester, Belén, Duff, Armin, Duarte Oller, Esther, Verschure, P., (2019). Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: A systematic meta-analysis Neurorehabilitation and Neural Repair 33, (2), 112-129

Background. Despite the rise of virtual reality (VR)-based interventions in stroke rehabilitation over the past decade, no consensus has been reached on its efficacy. This ostensibly puzzling outcome might not be that surprising given that VR is intrinsically neutral to its use—that is, an intervention is effective because of its ability to mobilize recovery mechanisms, not its technology. As VR systems specifically built for rehabilitation might capitalize better on the advantages of technology to implement neuroscientifically grounded protocols, they might be more effective than those designed for recreational gaming. Objective. We evaluate the efficacy of specific VR (SVR) and nonspecific VR (NSVR) systems for rehabilitating upper-limb function and activity after stroke. Methods. We conducted a systematic search for randomized controlled trials with adult stroke patients to analyze the effect of SVR or NSVR systems versus conventional therapy (CT). Results. We identified 30 studies including 1473 patients. SVR showed a significant impact on body function (standardized mean difference [SMD] = 0.23; 95% CI = 0.10 to 0.36; P = .0007) versus CT, whereas NSVR did not (SMD = 0.16; 95% CI = −0.14 to 0.47; P = .30). This result was replicated in activity measures. Conclusions. Our results suggest that SVR systems are more beneficial than CT for upper-limb recovery, whereas NSVR systems are not. Additionally, we identified 6 principles of neurorehabilitation that are shared across SVR systems and are possibly responsible for their positive effect. These findings may disambiguate the contradictory results found in the current literature.

Keywords: Stroke, Paresis, Virtual reality, Rehabilitation, Occupational therapy, Review

Maier, Martina, Ballester, Belén Rubio, Verschure, P., (2019). Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms Frontiers in Systems Neuroscience 13, 74

What are the principles underlying effective neurorehabilitation? The aim of neurorehabilitation is to exploit interventions based on human and animal studies about learning and adaptation, as well as to show that the activation of experience-dependent neuronal plasticity augments functional recovery after stroke. Instead of teaching compensatory strategies that do not reduce impairment but allow the patient to return home as soon as possible, functional recovery might be more sustainable as it ensures a long-term reduction in impairment and an improvement in quality of life. At the same time, neurorehabilitation permits the scientific community to collect valuable data, which allows inferring about the principles of brain organization. Hence neuroscience sheds light on the mechanisms of learning new functions or relearning lost ones. However, current rehabilitation methods lack the exact operationalization of evidence gained from skill learning literature, leading to an urgent need to bridge motor learning theory and present clinical work in order to identify a set of ingredients and practical applications that could guide future interventions. This work aims to unify the neuroscientific literature relevant to the recovery process and rehabilitation practice in order to provide a synthesis of the principles that constitute an effective neurorehabilitation approach. Previous attempts to achieve this goal either focused on a subset of principles or did not link clinical application to the principles of motor learning and recovery. We identified 15 principles of motor learning based on existing literature: massed practice, spaced practice, dosage, task-specific practice, goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of performance, modulate effector selection, action observation/embodied practice, motor imagery, and social interaction. We comment on trials that successfully implemented these principles and report evidence from experiments with healthy individuals as well as clinical work.

Keywords: Neurorehabilitation, Motor learning, Plasticity, Stroke, Principles

Rubio Ballester, B., Mura, A., Maier, M., Tobella-Pareja, Laura, Alfayate-Domingo, D., Gimeno-Esteve, M. F., Aguilar, A., Verschure, P., (2019). Adaptive VR-based rehabilitation to prevent deterioration in adults with cerebral palsy Application of VR and Advanced Technology in Pediatric Populations International Conference on Virtual Rehabilitation 2019 (ICVR 2019) , ISVR (Tel Aviv, Israel) , 1-7

Cerebral palsy (CP) is a disabling life-long condition progressively impeding a patient’s independence. Although incident rates are high, a clear understanding of the disease is missing. CP is characterized by several motor disorders and sensory or perceptive comorbidities. This multifaceted nature complicates proper diagnosis and hampers the search for possible treatments. During adolescence and adulthood, individuals with CP experience a drastic deterioration in gross motor control, independence, and quality of life. There is poor evidence that physical therapy promotes the retention of function through aging, and no clinical studies exist that explore the potential of VRbased training to prevent deterioration. In this pilot randomized controlled trial, we expose 14 adults with CP to the Rehabilitation Gaming System (RGS) and examine its usability, effectiveness, and acceptability. Our results show that the RGS difficulty adaptation algorithm automatically matches the patients' impairment level as captured by clinical scales (Barthel and Box & Blocks). The clinical effectiveness and acceptability of the RGS and conventional therapy were comparable. We conclude that VR-based physical therapy as an adjunct to usual treatment may be a promising approach for the prevention of deterioration in adolescents and adults with CP.

Keywords: Cerebral palsy, Virtual realitY, Motor function, Physical therapy, Rehabilitation

Maier, M., Low, S. C., Ballester, B. R., Bañuelos, N. L., Oller, E. D., Verschure, P., (2019). Depression modulates attentional processing after stroke Biosystems & Biorobotics International Conference on NeuroRehabilitation - Converging Clinical and Engineering Research on Neurorehabilitation III , Springer, Cham (Pisa, Italy) 21, 702-706

Depression is a common sequela after stroke and has severe implications on a patient’s life. Post-stroke depression has been linked to cognitive impairment, but the mechanisms that lead to this deficit are not well understood. We tested 18 chronic stroke patients with depression in a psychophysical task to evaluate their attentional processing under varying cognitive loads. We found that the level of depression had no effect on the unconscious, bottom-up components of attentional processing but did influence the top-down ones. These results support the notion that depression might act like an additional cognitive load, impeding the conscious processes and responses although the information has been unconsciously processed.

We demonstrate simultaneous transverse dynamic force microscopy and molecular recognition imaging using tuning forks as piezoelectric sensors. Tapered aluminum-coated glass fibers were chemically functionalized with biotin and anti-lysozyme molecules and attached to one of the prongs of a 32 kHz tuning fork. The lateral oscillation amplitude of the tuning fork was used as feedback signal for topographical imaging of avidin aggregates and lysozyme molecules on mica substrate. The phase difference between the excitation and detection signals of the tuning fork provided molecular recognition between avidin/biotin or lysozyme/anti-lysozyme. Aggregates of avidin and lysozyme molecules appeared as features with heights of 1-4 nm in the topographic images, consistent with single molecule atomic force microscopy imaging. Recognition events between avidin/biotin or lysozyme/anti-lysozyme were detected in the phase image at high signal-to-noise ratio with phase shifts of 1-2 degrees. Because tapered glass fibers and shear-force microscopy based on tuning forks are commonly used for near-field scanning optical microscopy (NSOM), these results open the door to the exciting possibility of combining optical, topographic and biochemical recognition at the nanometer scale in a single measurement and in liquid conditions.

Keywords: Tuning fork, Atomic force microscopy, Shear-force microscopy, Molecular recognition, Avidin-biotin