Staff member


Xerxes Arsiwalla

Postdoctoral Researcher
Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS)
xarsiwalla@ibecbarcelona.eu

Staff member publications

Arsiwalla, Xerxes D., Verschure, Paul, (2018). Measuring the complexity of consciousness Frontiers in Neuroscience 12, (424), Article 424

The grand quest for a scientific understanding of consciousness has given rise to many new theoretical and empirical paradigms for investigating the phenomenology of consciousness as well as clinical disorders associated to it. A major challenge in this field is to formalize computational measures that can reliably quantify global brain states from data. In particular, information-theoretic complexity measures such as integrated information have been proposed as measures of conscious awareness. This suggests a new framework to quantitatively classify states of consciousness. However, it has proven increasingly difficult to apply these complexity measures to realistic brain networks. In part, this is due to high computational costs incurred when implementing these measures on realistically large network dimensions. Nonetheless, complexity measures for quantifying states of consciousness are important for assisting clinical diagnosis and therapy. This article is meant to serve as a lookup table of measures of consciousness, with particular emphasis on clinical applicability. We consider both, principle-based complexity measures as well as empirical measures tested on patients. We address challenges facing these measures with regard to realistic brain networks, and where necessary, suggest possible resolutions. We address challenges facing these measures with regard to realistic brain networks, and where necessary, suggest possible resolutions.

Keywords: Consciousness in the Clinic, Computational neuroscience, Complexity measures, Clinical Neuroscience, Measures of consciousness


Hindriks, Rikkert, Schmiedt, Joscha, Arsiwalla, Xerxes D., Peter, Alina, Verschure, Paul F. M. J., Fries, Pascal, Schmid, Michael C., Deco, Gustavo, (2017). Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays PLoS ONE 12, (12), e0187490

Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires “inverting” Poisson’s equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to “invert” a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.


Moulin-Frier, C., Puigbò, J.-Y., Arsiwalla, Xerxes D., Martì Sanchez-Fibla, M., Verschure, Paul F. M. J., (2017). Embodied artificial intelligence through distributed adaptive control: An integrated framework 7th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-Epirob 2017) , IEEE (Lisbon, Portugal) , 1-8

In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.

Keywords: Cognitive Architectures, Embodied Artificial Intelligence, Evolutionary Arms Race, Unified Theories of Cognition