Staff member

Loris Rizzello

Postdoctoral Researcher
+34 934 039 956
Staff member publications

Bloise, Ermelinda, Di Bello, Maria Pia, Mele, Giuseppe, Rizzello, Loris, (2019). A green method for the production of an efficient bioimaging nanotool Nanoscale Advances RSC

The possibility of exploring basic biological phenomena requires the development of new and efficient bio-imaging tools. These should ideally combine the feasibility of production (potentially through the use of green chemistry) together with high targeting efficiency, low cytotoxicity, and optimal contrast characteristics. In this work, we developed nanovesicles based on cardanol, a natural and renewable byproduct of the cashew industry, and a fluorescent reporter was encapsulated in them through an environment-friendly synthesis method. In vitro investigations demonstrated that the cardanol nanovesicles are efficiently taken-up by both professional and non-professional phagocytic cells, which have been modeled in our approach by macrophages and HeLa cells, respectively. Co-localization studies show high affinity of the nanovesicles towards the cell plasma membrane. Moreover, metabolic assays confirmed that these nanostructures are biocompatible in a specific concentration range, and do not promote inflammation response in human macrophages. Stability studies carried out at different temperatures showed that the nanovesicles are stable at both 37 °C and 20 °C, while the formation of aggregates occurs when the nanodispersion is incubated at 4 °C. The results demonstrate the high potential of fluorescent cardanol nanovesicles as a green bioimaging tool, especially for investigating cell membrane dynamics.

Williams, Charlotte Katherine, Zhu, Yunqing, Poma, Alessandro, Rizzello, Loris, Gouveia, Virginia, Ruiz Perez, Lorena, Battaglia, Guiseppe, (2019). Metabolic-active fully hydrolysable polymersomes Angewandte Chemie International Edition Accepted Article

The synthesis and aqueous self-assembly of a new class of amphiphilic aliphatic polyesters are presented. These AB block polyesters comprise polycaprolactone (hydrophobe) and an alternating polyester from succinic acid and an ether substituted epoxide (hydrophile). They self-assemble into biodegradable polymersomes capable of entering cells. Their degradation products are bioactive giving rise to differentiated cellular responses inducing stromal cell proliferation and macrophage apoptosis. Both effects emerge only when the copolymers enter cells as polymersomes and their magnitudes are size dependent.

De Matteis, Valeria, Cascione, Mariafrancesca, Toma, Chiara Cristina, Pellegrino, Paolo, Rizzello, Loris, Rinaldi, Rosaria, (2019). Tailoring cell morphomechanical perturbations through metal oxide nanoparticles Nanoscale Research Letters 14, (1), 109

The nowadays growing use of nanoparticles (NPs) in commercial products does not match a comprehensive understanding of their potential harmfulness. More in vitro investigations are required to address how the physicochemical properties of NPs guide their engulfment within cells and their intracellular trafficking, fate, and toxicity. These nano-bio interactions have not been extensively addressed yet, especially from a mechanical viewpoint. Cell mechanic is a critical indicator of cell health because it regulates processes like cell migration, tissue integrity, and differentiation via cytoskeleton rearrangements. Here, we investigated in vitro the elasticity perturbation of Caco-2 and A549 cell lines, in terms of Young’s modulus modification induced by SiO2NPS and TiO2NPS. TiO2NPs demonstrated stronger effects on cell elasticity compared to SiO2NPs, as they induced significant morphological and morphometric changes in actin network. TiO2NPS increased the elasticity in Caco-2 cells, while opposite effects have been observed on A549 cells. These results demonstrate the existence of a correlation between the alteration of cell elasticity and NPs toxicity that depends, in turn, on the NPs physicochemical properties and the specific cell tested.