Staff member

Renata Kelly Da Palma

Postdoctoral Researcher
Biomimetic Systems for Cell Engineering

Staff member publications

Urbano, Jessica Julioti, da Palma, Renata Kelly, de Lima, Flávia Mafra, Fratini, Paula, Guimaraes, Leticia Lopes, Uriarte, Juan J., Alvarenga, Letícia Heineck, Miglino, Maria Angelica, Vieira, Rodolfo de Paula, Prates, Renato Araujo, Navajas, Daniel, Farré, Ramon, Oliveira, Luis Vicente Franco, (2017). Effects of two different decellularization routes on the mechanical properties of decellularized lungs PLoS ONE , 12, (6), e0178696

Considering the limited number of available lung donors, lung bioengineering using whole lung scaffolds has been proposed as an alternative approach to obtain lungs suitable for transplantation. However, some decellularization protocols can cause alterations on the structure, composition, or mechanical properties of the lung extracellular matrix. Therefore, the aim of this study was to compare the acellular lung mechanical properties when using two different routes through the trachea and pulmonary artery for the decellularization process. This study was performed by using the lungs excised from 30 healthy male C57BL/6 mice, which were divided into 3 groups: tracheal decellularization (TDG), perfusion decellularization (PDG), and control groups (CG). Both decellularized groups were subjected to decellularization protocol with a solution of 1% sodium dodecyl sulfate. The behaviour of mechanical properties of the acellular lungs was measured after decellularization process. Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. TDG and PDG showed reduced Est and Edyn elastances after lung decellularization. Scanning electron microscopy showed no structural changes after lung decellularization of the TDG and PDG. In conclusion, was demonstrated that there is no significant difference in the behaviour of mechanical properties and extracellular matrix of the decellularized lungs by using two different routes through the trachea and pulmonary artery.

da Palma, R. K., Nonaka, P. N., Campillo, N., Uriarte, J. J., Urbano, J. J., Navajas, D., Farré, R., Oliveira, L. V. F., (2016). Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs Journal of Biomechanics 49, (7), 1230-1232

Bioengineering of functional lung tissue by using whole lung scaffolds has been proposed as a potential alternative for patients awaiting lung transplant. Previous studies have demonstrated that vascular resistance (Rv) could be altered to optimize the process of obtaining suitable lung scaffolds. Therefore, this work was aimed at determining how lung inflation (tracheal pressure) and perfusion (pulmonary arterial pressure) affect vascular resistance. This study was carried out using the lungs excised from 5 healthy male Sprague-Dawley rats. The trachea was cannulated and connected to a continuous positive airway pressure (CPAP) device to provide a tracheal pressure ranging from 0 to 15cmH2O. The pulmonary artery was cannulated and connected to a controlled perfusion system with continuous pressure (gravimetric level) ranging from 5 to 30cmH2O. Effective Rv was calculated by ratio of pulmonary artery pressure (P PA) by pulmonary artery flow (V'PA). Rv in the decellularized lungs scaffolds decreased at increasing V' PA, stabilizing at a pulmonary arterial pressure greater than 20cmH2O. On the other hand, CPAP had no influence on vascular resistance in the lung scaffolds after being subjected to pulmonary artery pressure of 5cmH2O. In conclusion, compared to positive airway pressure, arterial lung pressure markedly influences the mechanics of vascular resistance in decellularized lungs.

Keywords: Decellularized lung, Scaffolds, Vascular resistance

da Palma, R. K., Campillo, N., Uriarte, J. J., Oliveira, L. V. F., Navajas, D., Farré, R., (2015). Pressure- and flow-controlled media perfusion differently modify vascular mechanics in lung decellularization Journal of the Mechanical Behavior of Biomedical Materials , 49, 69-79

Organ biofabrication is a potential future alternative for obtaining viable organs for transplantation. Achieving intact scaffolds to be recellularized is a key step in lung bioengineering. Perfusion of decellularizing media through the pulmonary artery has shown to be effective. How vascular perfusion pressure and flow vary throughout lung decellularization, which is not well known, is important for optimizing the process (minimizing time) while ensuring scaffold integrity (no barotrauma). This work was aimed at characterizing the pressure/flow relationship at the pulmonary vasculature and at how effective vascular resistance depends on pressure- and flow-controlled variables when applying different methods of media perfusion for lung decellularization. Lungs from 43 healthy mice (C57BL/6; 7-8 weeks old) were investigated. After excision and tracheal cannulation, lungs were inflated at 10cmH2O airway pressure and subjected to conventional decellularization with a solution of 1% sodium dodecyl sulfate (SDS). Pressure (PPA) and flow (V'PA) at the pulmonary artery were continuously measured. Decellularization media was perfused through the pulmonary artery: (a) at constant PPA=20cmH2O or (b) at constant V'PA=0.5 and 0.2ml/min. Effective vascular resistance was computed as Rv=PPA/V'PA. Rv (in cmH2O/(ml/min)); mean±SE) considerably varied throughout lung decellularization, particularly for pressure-controlled perfusion (from 29.1±3.0 in baseline to a maximum of 664.1±164.3 (p<0.05), as compared with flow-controlled perfusion (from 49.9±3.3 and 79.5±5.1 in baseline to a maximum of 114.4±13.9 and 211.7±70.5 (p<0.05, both), for V'PA of 0.5 and 0.2ml/min respectively. Most of the media infused to the pulmonary artery throughout decellularization circulated to the airways compartment across the alveolar-capillary membrane. This study shows that monitoring perfusion mechanics throughout decellularization provides information relevant for optimizing the process time while ensuring that vascular pressure is kept within a safety range to preserve the organ scaffold integrity.

Keywords: Acellular lung, Fluid mechanics, Lung bioengineering, Lung scaffold, Organ biofabrication, Tissue engineering, Vascular resistance

da Palma, R. K., Farré, R., Montserrat, J. M., Gorbenko Del Blanco, D., Egea, G., de Oliveira, L. V. F., Navajas, D., Almendros, I., (2015). Increased upper airway collapsibility in a mouse model of Marfan syndrome Respiratory Physiology & Neurobiology , 207, 58-60

Marfan syndrome (MFS) is a genetic disorder caused by mutations in the FBN1 gene that codifies for fibrilin-1. MFS affects elastic fiber formation and the resulting connective tissue shows abnormal tissue laxity and organization. Although an increased prevalence of obstructive sleep apnea among patients with MFS has been described, the potential effects of this genetic disease on the collapsible properties of the upper airway are unknown. The aim of this study was to assess the collapsible properties of the upper airway in a mouse model of MFS Fbn1(C1039G/+) that is representative of most of the clinical manifestations observed in human patients. The upper airway in wild-type and Marfan mice was cannulated and its critical pressure (Pcrit) was measured in vivo by increasing the negative pressure through a controlled pressure source. Pcrit values from MFS mice were higher (less negative) compared to wild-type mice (-3.1±0.9cmH2O vs. -7.8±2.0cm H2O) suggesting that MFS increases the upper airway collapsibility, which could in turn explain the higher prevalence of OSA in MFS patients.

Keywords: Marfan syndrome, Obstructive sleep apnea, Upper airway collapsibility