Staff member

Valeria De Matteis

Visiting Researcher

Staff member publications

De Matteis, Valeria, Rizzello, Loris, (2020). Noble metals and soft bio-inspired nanoparticles in retinal diseases treatment: A perspective Cells 9, (3), 679

We are witnessing an exponential increase in the use of different nanomaterials in a plethora of biomedical fields. We are all aware of how nanoparticles (NPs) have influenced and revolutionized the way we supply drugs or how to use them as therapeutic agents thanks to their tunable physico-chemical properties. However, there is still a niche of applications where NP have not yet been widely explored. This is the field of ocular delivery and NP-based therapy, which characterizes the topic of the current review. In particular, many efforts are being made to develop nanosystems capable of reaching deeper sections of the eye such as the retina. Particular attention will be given here to noble metal (gold and silver), and to polymeric nanoparticles, systems consisting of lipid bilayers such as liposomes or vesicles based on nonionic surfactant. We will report here the most relevant literature on the use of different types of NPs for an efficient delivery of drugs and bio-macromolecules to the eyes or as active therapeutic tools.

Keywords: Bio-inspired NPs, Drug delivery, Noble metals NPs, Retinal diseases

De Matteis, Valeria, Rizzello, Loris, Ingrosso, Chiara, Liatsi-Douvitsa, Eva, De Giorgi, Maria Luisa, De Matteis, Giovanni, Rinaldi, Rosaria, (2019). Cultivar-dependent anticancer and antibacterial properties of silver nanoparticles synthesized using leaves of different Olea Europaea trees Nanomaterials 9, (11), 1544

The green synthesis of nanoparticles (NPs) is currently under worldwide investigation as an eco-friendly alternative to traditional routes (NPs): the absence of toxic solvents and catalysts make it suitable in the design of promising nanomaterials for nanomedicine applications. In this work, we used the extracts collected from leaves of two cultivars (Leccino and Carolea) belonging to the species Olea Europaea, to synthesize silver NPs (AgNPs) in different pH conditions and low temperature. NPs underwent full morphological characterization with the aim to define a suitable protocol to obtain a monodispersed population of AgNPs. Afterwards, to validate the reproducibility of the mentioned synthetic procedure, we moved on to another Mediterranean plant, the Laurus Nobilis. Interestingly, the NPs obtained using the two olive cultivars produced NPs with different shape and size, strictly depending on the cultivar selected and pH. Furthermore, the potential ability to inhibit the growth of two woman cancer cells (breast adenocarcinoma cells, MCF-7 and human cervical epithelioid carcinoma, HeLa) were assessed for these AgNPs, as well as their capability to mitigate the bacteria concentration in samples of contaminated well water. Our results showed that toxicity was stronger when MCF-7 and Hela cells were exposed to AgNPs derived from Carolea obtained at pH 7 presenting irregular shape; on the other hand, greater antibacterial effect was revealed using AgNPs obtained at pH 8 (smaller and monodispersed) on well water, enriched with bacteria and coliforms.

Keywords: Green synthesis, Silver nanoparticles, Olea Europaea, Leccino, Carolea, Cytotoxicity, Genotoxicity, Antibacterial activity

De Matteis, Valeria, Cascione, Mariafrancesca, Toma, Chiara Cristina, Pellegrino, Paolo, Rizzello, Loris, Rinaldi, Rosaria, (2019). Tailoring cell morphomechanical perturbations through metal oxide nanoparticles Nanoscale Research Letters 14, (1), 109

The nowadays growing use of nanoparticles (NPs) in commercial products does not match a comprehensive understanding of their potential harmfulness. More in vitro investigations are required to address how the physicochemical properties of NPs guide their engulfment within cells and their intracellular trafficking, fate, and toxicity. These nano-bio interactions have not been extensively addressed yet, especially from a mechanical viewpoint. Cell mechanic is a critical indicator of cell health because it regulates processes like cell migration, tissue integrity, and differentiation via cytoskeleton rearrangements. Here, we investigated in vitro the elasticity perturbation of Caco-2 and A549 cell lines, in terms of Young’s modulus modification induced by SiO2NPS and TiO2NPS. TiO2NPs demonstrated stronger effects on cell elasticity compared to SiO2NPs, as they induced significant morphological and morphometric changes in actin network. TiO2NPS increased the elasticity in Caco-2 cells, while opposite effects have been observed on A549 cells. These results demonstrate the existence of a correlation between the alteration of cell elasticity and NPs toxicity that depends, in turn, on the NPs physicochemical properties and the specific cell tested.