Staff member


Marina Uroz Marimon

Research Assistant
Integrative Cell and Tissue Dynamics
muroz@ibecbarcelona.eu
+34 934 037 068
Staff member publications

Uroz, Marina, Wistorf, Sabrina, Serra-Picamal, Xavier, Conte, Vito, Sales-Pardo, Marta, Roca-Cusachs, Pere, Guimerà, Roger, Trepat, Xavier, (2018). Regulation of cell cycle progression by cell–cell and cell–matrix forces Nature Cell Biology 20, (6), 646-654

It has long been proposed that the cell cycle is regulated by physical forces at the cell–cell and cell–extracellular matrix (ECM) interfaces. However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression is unknown. Here, we quantified cell–cell tension and cell–ECM traction throughout the complete cycle of a large cell population in a growing epithelium. These measurements unveil temporal mechanical patterns that span the entire cell cycle and regulate its duration, the G1–S transition and mitotic rounding. Cells subjected to higher intercellular tension exhibit a higher probability to transition from G1 to S, as well as shorter G1 and S–G2–M phases. Moreover, we show that tension and mechanical energy are better predictors of the duration of G1 than measured geometric properties. Tension increases during the cell cycle but decreases 3 hours before mitosis. Using optogenetic control of contractility, we show that this tension drop favours mitotic rounding. Our results establish that cell cycle progression is regulated cooperatively by forces between the dividing cell and its neighbours.


Dix, Christina L., Matthews, Helen K., Uroz, Marina, McLaren, Susannah, Wolf, Lucie, Heatley, Nicholas, Win, Zaw, Almada, Pedro, Henriques, Ricardo, Boutros, Michael, Trepat, Xavier, Baum, Buzz, (2018). The role of mitotic cell-substrate adhesion re-modeling in animal cell division Developmental Cell 45, (1), 132-145

Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.

Keywords: Division, Mitotic-rounding, Integrin-based adhesion, Cytokinesis


Malinverno, C., Corallino, S., Giavazzi, F., Bergert, M., Li, Q., Leoni, M., Disanza, A., Frittoli, E., Oldani, A., Martini, E., Lendenmann, T., Deflorian, G., Beznoussenko, G. V., Poulikakos, D., Ong, K. H., Uroz, M., Trepat, X., Parazzoli, D., Maiuri, P., Yu, W., Ferrari, A., Cerbino, R., Scita, G., (2017). Endocytic reawakening of motility in jammed epithelia Nature Materials 16, 587–596

Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.


Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., Oria, R., Kechagia, J. Z., Rico-Lastres, P., Le Roux, A. L., Shanahan, C. M., Trepat, X., Navajas, D., Garcia-Manyes, S., Roca-Cusachs, P., (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores Cell 171, (6), 1397-1410

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Force-dependent changes in nuclear pores control protein access to the nucleus.

Keywords: Atomic force microscopy, Hippo pathway, Mechanosensing, Mechanotransduction, Molecular mechanical stability, Nuclear mechanics, Nuclear pores, Nuclear transport, Rigidity sensing, Transcription regulation


Vincent, Romaric, Bazellières, Elsa, Pérez-González, Carlos, Uroz, Marina, Serra-Picamal, Xavier, Trepat, Xavier, (2015). Active tensile modulus of an epithelial monolayer Physical Review Letters 115, (24), 248103

A general trait of cell monolayers is their ability to exert contractile stresses on their surroundings. The scaling laws that link such contractile stresses with the size and geometry of constituent cells remain largely unknown. In this Letter, we show that the active tension of an epithelial monolayer scales linearly with the size of the constituent cells, a surprisingly simple relationship. The slope of this relationship defines an active tensile modulus, which depends on the concentration of myosin and spans more than 2 orders of magnitude across cell types and molecular perturbations.


Brask, J. B., Singla-Buxarrais, G., Uroz, M., Vincent, R., Trepat, X., (2015). Compressed sensing traction force microscopy Acta Biomaterialia 26, 286-294

Adherent cells exert traction forces on their substrate, and these forces play important roles in biological functions such as mechanosensing, cell differentiation and cancer invasion. The method of choice to assess these active forces is traction force microscopy (TFM). Despite recent advances, TFM remains highly sensitive to measurement noise and exhibits limited spatial resolution. To improve the resolution and noise robustness of TFM, here we adapt techniques from compressed sensing (CS) to the reconstruction of the traction field from the substrate displacement field. CS enables the recovery of sparse signals at higher resolution from lower resolution data. Focal adhesions (FAs) of adherent cells are spatially sparse implying that traction fields are also sparse. Here we show, by simulation and by experiment, that the CS approach enables circumventing the Nyquist-Shannon sampling theorem to faithfully reconstruct the traction field at a higher resolution than that of the displacement field. This allows reaching state-of-the-art resolution using only a medium magnification objective. We also find that CS improves reconstruction quality in the presence of noise. Statement of Significance A great scientific advance of the past decade is the recognition that physical forces determine an increasing list of biological processes. Traction force microscopy which measures the forces that cells exert on their surroundings has seen significant recent improvements, however the technique remains sensitive to measurement noise and severely limited in spatial resolution. We exploit the fact that the force fields are sparse to boost the spatial resolution and noise robustness by applying ideas from compressed sensing. The novel method allows high resolution on a larger field of view. This may in turn allow better understanding of the cell forces at the multicellular level, which are known to be important in wound healing and cancer invasion.

Keywords: Compressed sensing, High resolution, Traction force microscopy