Staff member


Ignasi Jorba Masdéu

PhD Student
Cellular and Respiratory Biomechanics
ijorba@ibecbarcelona.eu
+34 934 039 764
Staff member publications

Notari, M., Ventura-Rubio, A., Bedford-Guaus, S. J., Jorba, I., Mulero, L., Navajas, D., Martí, M., Raya, A., (2018). The local microenvironment limits the regenerative potential of the mouse neonatal heart Science Advances 4, (5), eaao5553

Neonatal mice have been shown to regenerate their hearts during a transient window of time of approximately 1 week after birth. However, experimental evidence for this phenomenon is not undisputed, because several laboratories have been unable to detect neonatal heart regeneration. We first confirmed that 1-day-old neonatal mice are indeed able to mount a robust regenerative response after heart amputation. We then found that this regenerative ability sharply declines within 48 hours, with hearts of 2-day-old mice responding to amputation with fibrosis, rather than regeneration. By comparing the global transcriptomes of 1- and 2-day-old mouse hearts, we found that most differentially expressed transcripts encode extracellular matrix components and structural constituents of the cytoskeleton. These results suggest that the stiffness of the local microenvironment, rather than cardiac cell-autonomous mechanisms, crucially determines the ability or inability of the heart to regenerate. Testing this hypothesis by pharmacologically decreasing the stiffness of the extracellular matrix in 3-day-old mice, we found that decreased matrix stiffness rescued the ability ofmice to regenerate heart tissue after apical resection. Together, our results identify an unexpectedly restricted time window of regenerative competence in the mouse neonatal heart and open new avenues for promoting cardiac regeneration by local modification of the extracellular matrix stiffness.


Alcaraz, J., Otero, J., Jorba, I., Navajas, D., (2018). Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy Seminars in Cell and Developmental Biology 73, 71-81

There is growing recognition that the mechanical interactions between cells and their local extracellular matrix (ECM) are central regulators of tissue development, homeostasis, repair and disease progression. The unique ability of atomic force microscopy (AFM) to probe quantitatively mechanical properties and forces at the nanometer or micrometer scales in all kinds of biological samples has been instrumental in the recent advances in cell and tissue mechanics. In this review we illustrate how AFM has provided important insights on our current understanding of the mechanobiology of cells, ECM and cell-ECM bidirectional interactions, particularly in the context of soft acinar tissues like the mammary gland or pulmonary tissue. AFM measurements have revealed that intrinsic cell micromechanics is cell-type specific, and have underscored the prominent role of β1 integrin/FAK(Y397) signaling and the actomyosin cytoskeleton in the mechanoresponses of both parenchymal and stromal cells. Moreover AFM has unveiled that the micromechanics of the ECM obtained by tissue decellularization is unique for each anatomical compartment, which may support both its specific function and cell differentiation. AFM has also enabled identifying critical mechanoregulatory proteins involved in branching morphogenesis (MMP14) and acinar differentiation (α3β1 integrin), and has clarified the role of altered tissue mechanics and architecture in a variety of pathologic conditions. Critical technical issues of AFM mechanical measurements like tip geometry effects are also discussed.

Keywords: Atomic force microscopy, Beta1 integrin, Elastic modulus, Extracellular matrix, Morphogenesis, Tissue decellularization


Perea-Gil, I., Gálvez-Montón, C., Prat-Vidal, C., Jorba, I., Segú-Vergés, C., Roura, S., Soler-Botija, C., Iborra-Egea, O., Revuelta-López, E., Fernández, M. A., Farré, R., Navajas, D., Bayes-Genis, A., (2018). Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing Scientific Reports 8, (1), 6708

Cardiac tissue engineering, which combines cells and supportive scaffolds, is an emerging treatment for restoring cardiac function after myocardial infarction (MI), although, the optimal construct remains a challenge. We developed two engineered cardiac grafts, based on decellularized scaffolds from myocardial and pericardial tissues and repopulated them with adipose tissue mesenchymal stem cells (ATMSCs). The structure, macromechanical and micromechanical scaffold properties were preserved upon the decellularization and recellularization processes, except for recellularized myocardium micromechanics that was ~2-fold stiffer than native tissue and decellularized scaffolds. Proteome characterization of the two acellular matrices showed enrichment of matrisome proteins and major cardiac extracellular matrix components, considerably higher for the recellularized pericardium. Moreover, the pericardial scaffold demonstrated better cell penetrance and retention, as well as a bigger pore size. Both engineered cardiac grafts were further evaluated in pre-clinical MI swine models. Forty days after graft implantation, swine treated with the engineered cardiac grafts showed significant ventricular function recovery. Irrespective of the scaffold origin or cell recolonization, all scaffolds integrated with the underlying myocardium and showed signs of neovascularization and nerve sprouting. Collectively, engineered cardiac grafts -with pericardial or myocardial scaffolds- were effective in restoring cardiac function post-MI, and pericardial scaffolds showed better structural integrity and recolonization capability.


Menal, M. J., Jorba, I., Torres, M., Montserrat, J. M., Gozal, D., Colell, A., Piñol-Ripoll, G., Navajas, D., Almendros, I., Farré, R., (2018). Alzheimer's disease mutant mice exhibit reduced brain tissue stiffness compared to wild-type mice in both normoxia and following intermittent hypoxia mimicking sleep apnea Frontiers in Neurology 9, Article 1

Background: Evidence from patients and animal models suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer’s disease (AD) and that AD is associated with reduced brain tissue stiffness. Aim: To investigate whether intermittent hypoxia (IH) alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA. Methods: Six-eight month old (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) AD mutant mice and wild-type (WT) littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day) or normoxia for 8 weeks. After euthanasia, the stiffness (E) of 200-μm brain cortex slices was measured by atomic force microscopy. Results: Two-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT), but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice. Conclusion: AD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

Keywords: Animal model, Atomic force microscopy, Brain mechanics, Cortex stiffness, Neurodegenerative disease


Farré, N., Otero, J., Falcones, B., Torres, M., Jorba, I., Gozal, D., Almendros, I., Farré, R., Navajas, D., (2018). Intermittent hypoxia mimicking sleep apnea increases passive stiffness of myocardial extracellular matrix. A multiscale study Frontiers in Physiology 9, Article 1143

Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea (OSA), a very prevalent respiratory disease associated with increased cardiovascular morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH) mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and molecular levels. However, it remains unclear whether IH modifies the passive stiffness of the cardiac tissue extracellular matrix (ECM). Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of left ventricular (LV) myocardium in a murine model of OSA. Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20% O2 40 s–6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each age were kept under normoxia. Fresh LV myocardial strips (~7 mm × 1 mm × 1 mm) were prepared, and their ECM was obtained by decellularization. Myocardium ECM macroscale mechanics were measured by performing uniaxial stress–strain tensile tests. Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain and Young’s modulus (EM) computed at 0.2 strain by fitting Fung’s constitutive model to the stress–strain relationship. ECM stiffness was characterized at the microscale as the Young’s modulus (Em) measured in decellularized tissue slices (~12 μm tick) by atomic force microscopy. Results: Intermittent hypoxia induced a ~1.5-fold increase in σ (p < 0.001) and a ~2.5-fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In contrast, no significant differences emerged in Em among IH-exposed and normoxic mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young and aged mice. Conclusion: The marked IH-induced increases in macroscale stiffness of LV myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM stiffness suggests that the significant increases in macroscale stiffening are primarily mediated by 3D structural ECM remodeling.

Keywords: Atomic force microscopy, Heart mechanics, Myocardial stiffness, Obstructive sleep apnea, Tensile test, Ventricular strain


Jorba, I., Uriarte, J. J., Campillo, N., Farré, R., Navajas, D., (2017). Probing micromechanical properties of the extracellular matrix of soft tissues by atomic force microscopy Journal of Cellular Physiology 232, (1), 19-26

The extracellular matrix (ECM) determines 3D tissue architecture and provides structural support and chemical and mechanical cues to the cells. Atomic force microscopy (AFM) has unique capabilities to measure ECM mechanics at the scale at which cells probe the mechanical features of their microenvironment. Moreover, AFM measurements can be readily combined with bright field and fluorescence microscopy. Performing reliable mechanical measurements with AFM requires accurate calibration of the device and correct computation of the mechanical parameters. A suitable approach to isolate ECM mechanics from cell contribution is removing the cells by means of an effective decellularization process that preserves the composition, structure and mechanical properties of the ECM. AFM measurement of ECM micromechanics provides important insights into organ biofabrication, cell-matrix mechanical crosstalk and disease-induced tissue stiffness alterations.


Jorba, I., Menal, M. J., Torres, M., Gozal, D., Piñol-Ripoll, G., Colell, A., Montserrat, J. M., Navajas, D., Farré, R., Almendros, I., (2017). Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice Journal of the Mechanical Behavior of Biomedical Materials 71, 106-113

Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O2 40 s – 6% O2 20 s) for 8 weeks (6 h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122 Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice.

Keywords: Atomic Force Microscopy, Brain mechanics, Cortex stiffness, Hippocampus stiffness, Obstructive sleep apnea, Young's modulus


Marsal, Maria, Jorba, Ignasi, Rebollo, Elena, Luque, Tomas, Navajas, Daniel, Martín-Blanco, Enrique, (2017). AFM and microrheology in the zebrafish embryo yolk cell Journal of Visualized Experiments Developmental Biology, (129), e56224

Elucidating the factors that direct the spatio-temporal organization of evolving tissues is one of the primary purposes in the study of development. Various propositions claim to have been important contributions to the understanding of the mechanical properties of cells and tissues in their spatiotemporal organization in different developmental and morphogenetic processes. However, due to the lack of reliable and accessible tools to measure material properties and tensional parameters in vivo, validating these hypotheses has been difficult. Here we present methods employing atomic force microscopy (AFM) and particle tracking with the aim of quantifying the mechanical properties of the intact zebrafish embryo yolk cell during epiboly. Epiboly is an early conserved developmental process whose study is facilitated by the transparency of the embryo. These methods are simple to implement, reliable, and widely applicable since they overcome intrusive interventions that could affect tissue mechanics. A simple strategy was applied for the mounting of specimens, AFM recording, and nanoparticle injections and tracking. This approach makes these methods easily adaptable to other developmental times or organisms.

Keywords: Developmental Biology, Zebrafish, Yolk, Atomic Force Microscopy, Cortical Tension, Microrheology, Nanoparticle tracking


Campillo, N., Jorba, I., Schaedel, L., Casals, B., Gozal, D., Farré, R., Almendros, I., Navajas, D., (2016). A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea Frontiers in Physiology 7, Article 319

Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1a (HIF-1a) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

Keywords: Cell stretch, Hypoxia-inducible factor, Intermittent hypoxia, Lab-on-a-chip, Obstructive sleep apnea