Publications

by Keyword: Anopheles


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Martí Coma-Cros, E., Biosca, A., Marques, J., Carol, L., Urbán, P., Berenguer, D., Riera, M. C., Delves, M., Sinden, R. E., Valle-Delgado, J. J., Spanos, L., Siden-Kiamos, I., Pérez, P., Paaijmans, K., Rottmann, M., Manfredi, A., Ferruti, P., Ranucci, E., Fernàndez-Busquets, X., (2018). Polyamidoamine nanoparticles for the oral administration of antimalarial drugs Pharmaceutics 10, (4), 225

Current strategies for the mass administration of antimalarial drugs demand oral formulations to target the asexual Plasmodium stages in the peripheral bloodstream, whereas recommendations for future interventions stress the importance of also targeting the transmission stages of the parasite as it passes between humans and mosquitoes. Orally administered polyamidoamine (PAA) nanoparticles conjugated to chloroquine reached the blood circulation and cured Plasmodium yoelii-infected mice, slightly improving the activity of the free drug and inducing in the animals immunity against malaria. Liquid chromatography with tandem mass spectrometry analysis of affinity chromatography-purified PAA ligands suggested a high adhesiveness of PAAs to Plasmodium falciparum proteins, which might be the mechanism responsible for the preferential binding of PAAs to Plasmodium-infected erythrocytes vs. non-infected red blood cells. The weak antimalarial activity of some PAAs was found to operate through inhibition of parasite invasion, whereas the observed polymer intake by macrophages indicated a potential of PAAs for the treatment of certain coinfections such as Plasmodium and Leishmania. When fluorescein-labeled PAAs were fed to females of the malaria mosquito vectors Anopheles atroparvus and Anopheles gambiae, persistent fluorescence was observed in the midgut and in other insect’s tissues. These results present PAAs as a versatile platform for the encapsulation of orally administered antimalarial drugs and for direct administration of antimalarials to mosquitoes, targeting mosquito stages of Plasmodium.

Keywords: Anopheles, Antimalarial drugs, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Polyamidoamines, Polymers, Targeted drug delivery


Aláez-Versón, C. R., Lantero, E., Fernàndez-Busquets, X., (2017). Heparin: New life for an old drug Nanomedicine 12, (14), 1727-1744

Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical use as an inhibitor of blood coagulation. The history of its identification a century ago unfolded amid one of the most fascinating scientific controversies turning around the distribution of credit for its discovery. The composition, purification and structure-function relationship of this naturally occurring glycosaminoglycan regarding its classical role as anticoagulant will be dealt with before proceeding to discuss its therapeutic potential in, among other, inflammatory and infectious disease, cancer treatment, cystic fibrosis and Alzheimer's disease. The first bibliographic reference hit using the words 'nanomedicine' and 'heparin' is as recent as 2008. Since then, nanomedical applications of heparin have experienced an exponential growth that will be discussed in detail, with particular emphasis on its antimalarial activity. Some of the most intriguing potential applications of heparin nanomedicines will be exposed, such as those contemplating the delivery of drugs to the mosquito stages of malaria parasites.

Keywords: Anopheles, Antimalarial drugs, Heparin, Malaria, Mosquitoes, Nanomedicine, Nanotechnology, Plasmodium, Targeted drug delivery


Fernàndez-Busquets, X., (2016). Novel strategies for Plasmodium-targeted drug delivery Expert Opinion on Drug Delivery , 13, (7), 919-922

Fernàndez-Busquets, X., (2014). Toy kit against malaria: Magic bullets, LEGO, Trojan horses and Russian dolls Therapeutic Delivery , 5, (10), 1049-1052