Publications

by Keyword: Catalysis


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Horteläo, Ana C., Carrascosa, Rafael, Murillo-Cremaes, Nerea, Patiño, Tania, Sánchez, Samuel, (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano 13, (1), 429-439

Cancer is one of the main causes of death around the world, lacking efficient clinical treatments that generally present severe side effects. In recent years, various nanosystems have been explored to specifically target tumor tissues, enhancing the efficacy of cancer treatment and minimizing the side effects. In particular, bladder cancer is the ninth most common cancer worldwide and presents a high survival rate but serious recurrence levels, demanding an improvement in the existent therapies. Here, we present urease-powered nanomotors based on mesoporous silica nanoparticles that contain both polyethylene glycol and anti-FGFR3 antibody on their outer surface to target bladder cancer cells in the form of 3D spheroids. The autonomous motion is promoted by urea, which acts as fuel and is inherently present at high concentrations in the bladder. Antibody-modified nanomotors were able to swim in both simulated and real urine, showing a substrate-dependent enhanced diffusion. The internalization efficiency of the antibody-modified nanomotors into the spheroids in the presence of urea was significantly higher compared with antibody-modified passive particles or bare nanomotors. Furthermore, targeted nanomotors resulted in a higher suppression of spheroid proliferation compared with bare nanomotors, which could arise from the local ammonia production and the therapeutic effect of anti-FGFR3. These results hold significant potential for the development of improved targeted cancer therapy and diagnostics using biocompatible nanomotors.

Keywords: 3D cell culture, Bladder cancer, Enzymatic catalysis, Nanomachines, Nanomotors, Self-propulsion, Targeting


Arqué, Xavier, Romero-Rivera, Adrian, Feixas, Ferran, Patiño, Tania, Osuna, Sílvia, Sánchez, Samuel, (2019). Intrinsic enzymatic properties modulate the self-propulsion of micromotors Nature Communications 10, (1), 2826

Bio-catalytic micro- and nanomotors self-propel by the enzymatic conversion of substrates into products. Despite the advances in the field, the fundamental aspects underlying enzyme-powered self-propulsion have rarely been studied. In this work, we select four enzymes (urease, acetylcholinesterase, glucose oxidase, and aldolase) to be attached on silica microcapsules and study how their turnover number and conformational dynamics affect the self-propulsion, combining both an experimental and molecular dynamics simulations approach. Urease and acetylcholinesterase, the enzymes with higher catalytic rates, are the only enzymes capable of producing active motion. Molecular dynamics simulations reveal that urease and acetylcholinesterase display the highest degree of flexibility near the active site, which could play a role on the catalytic process. We experimentally assess this hypothesis for urease micromotors through competitive inhibition (acetohydroxamic acid) and increasing enzyme rigidity (β-mercaptoethanol). We conclude that the conformational changes are a precondition of urease catalysis, which is essential to generate self-propulsion.

Keywords: Biocatalysis, Immobilized enzymes, Molecular machines and motors


Llopis-Lorente, A., Garcií-Fernández, A., Murillo-Cremaes, N., Hortelão, A. C., Patinño, T., Villalonga, R., Sancenón, F., Martínez-Máñer, R., Sánchez, S., (2019). Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery ACS Nano 13, (10), 12171-12183

The introduction of stimuli-responsive cargo release capabilities on self-propelled micro- and nanomotors holds enormous potential in a number of applications in the biomedical field. Herein, we report the preparation of mesoporous silica nanoparticles gated with pH-responsive supramolecular nanovalves and equipped with urease enzymes which act as chemical engines to power the nanomotors. The nanoparticles are loaded with different cargo molecules ([Ru(bpy)3]Cl2 (bpy = 2,2′-bipyridine) or doxorubicin), grafted with benzimidazole groups on the outer surface, and capped by the formation of inclusion complexes between benzimidazole and cyclodextrin-modified urease. The nanomotor exhibits enhanced Brownian motion in the presence of urea. Moreover, no cargo is released at neutral pH, even in the presence of the biofuel urea, due to the blockage of the pores by the bulky benzimidazole:cyclodextrin-urease caps. Cargo delivery is only triggered on-command at acidic pH due to the protonation of benzimidazole groups, the dethreading of the supramolecular nanovalves, and the subsequent uncapping of the nanoparticles. Studies with HeLa cells indicate that the presence of biofuel urea enhances nanoparticle internalization and both [Ru(bpy)3]Cl2 or doxorubicin intracellular release due to the acidity of lysosomal compartments. Gated enzyme-powered nanomotors shown here display some of the requirements for ideal drug delivery carriers such as the capacity to self-propel and the ability to “sense” the environment and deliver the payload on demand in response to predefined stimuli.

Keywords: Controlled release, Drug delivery, Enzymatic catalysis, Gatekeepers, Nanocarriers, Nanomotors, Stimuli-responsive nanomaterials


Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, A., Sánchez, S., (2018). Enzyme-powered nanobots enhance anticancer drug delivery Advanced Functional Materials 28, 1705086

The use of enzyme catalysis to power micro- and nanomotors exploiting biocompatible fuels has opened new ventures for biomedical applications such as the active transport and delivery of specific drugs to the site of interest. Here, urease-powered nanomotors (nanobots) for doxorubicin (Dox) anticancer drug loading, release, and efficient delivery to cells are presented. These mesoporous silica-based core-shell nanobots are able to self-propel in ionic media, as confirmed by optical tracking and dynamic light scattering analysis. A four-fold increase in drug release is achieved by nanobots after 6 h compared to their passive counterparts. Furthermore, the use of Dox-loaded nanobots presents an enhanced anticancer efficiency toward HeLa cells, which arises from a synergistic effect of the enhanced drug release and the ammonia produced at high concentrations of urea substrate. A higher content of Dox inside HeLa cells is detected after 1, 4, 6, and 24 h incubation with active nanobots compared to passive Dox-loaded nanoparticles. The improvement in drug delivery efficiency achieved by enzyme-powered nanobots may hold potential toward their use in future biomedical applications such as the substrate-triggered release of drugs in target locations.

Keywords: Drug delivery, Enzymatic catalysis, Nanobots, Nanomachines, Nanomotors


Ma, X., Sánchez, S., (2017). Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme Tetrahedron , 73, (33), 4883-4886

Enzyme triggered bio-catalytic reactions convert chemical energy into mechanical force to power micro/nano-machines. Though there have been reports about enzymes powered micro/nano-motors, enzymatic Janus nano-motor smaller than 100 nm has not been reported yet. Here, we prepared an enzyme powered Janus nano-motor by half-capping a thin layer of silicon dioxide (4 nm SiO2) onto a mesoporous silica nanoparticle (MSNP) of 90 nm, enabling asymmetry to the nano-architecture. The nano-motors are chemically powered by the decomposition of H2O2 triggered by the enzyme catalase located at one face of the nanoparticles. The self-propulsion is characterized by dynamic light scattering (DLS) and optical microscopy. The apparent diffusion coefficient was enhanced by 150% compared to their Brownian motion at low H2O2 concentration (i.e. below 3 wt%). Mesoporous nano-motors might serve as active drug delivery nano-systems in future biomedical applications such as intracellular drug delivery.

Keywords: Enzyme catalysis, Janus particles, Mesoporous silica, Nano-motors, Nanomachine, Self-propulsion


Aragonès, Albert C., Haworth, Naomi L., Darwish, Nadim, Ciampi, Simone, Bloomfield, Nathaniel J., Wallace, Gordon G., Diez-Perez, Ismael, Coote, Michelle L., (2016). Electrostatic catalysis of a Diels–Alder reaction Nature 531, (7592), 88-91

It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could affect the outcomes of a range of chemical reactions, regardless of whether a redox system is involved1, 2, 3, 4. This possibility arises because many formally covalent species can be stabilized via minor charge-separated resonance contributors. When an applied electric field is aligned in such a way as to electrostatically stabilize one of these minor forms, the degree of resonance increases, resulting in the overall stabilization of the molecule or transition state. This means that it should be possible to manipulate the kinetics and thermodynamics of non-redox processes using an external electric field, as long as the orientation of the approaching reactants with respect to the field stimulus can be controlled. Here, we provide experimental evidence that the formation of carbon–carbon bonds is accelerated by an electric field. We have designed a surface model system to probe the Diels–Alder reaction, and coupled it with a scanning tunnelling microscopy break-junction approach5, 6, 7. This technique, performed at the single-molecule level, is perfectly suited to deliver an electric-field stimulus across approaching reactants. We find a fivefold increase in the frequency of formation of single-molecule junctions, resulting from the reaction that occurs when the electric field is present and aligned so as to favour electron flow from the dienophile to the diene. Our results are qualitatively consistent with those predicted by quantum-chemical calculations in a theoretical model of this system, and herald a new approach to chemical catalysis.

Keywords: Electrocatalysis, Scanning probe microscopy


Parmar, J., Vilela, D., Pellicer, E., Esqué-de los Ojos, D., Sort, J., Sánchez, S., (2016). Reusable and long-lasting active microcleaners for heterogeneous water remediation Advanced Functional Materials 26, (23), 4152-4161

Self-powered micromachines are promising tools for future environmental remediation technology. Waste-water treatment and water reuse is an essential part of environmental sustainability. Herein, we present reusable Fe/Pt multi-functional active microcleaners that are capable of degrading organic pollutants (malachite green and 4-nitrophenol) by generated hydroxyl radicals via a Fenton-like reaction. Various different properties of microcleaners, such as the effect of their size, short-term storage, long-term storage, reusability, continuous swimming capability, surface composition, and mechanical properties, are studied. It is found that these microcleaners can continuously swim for more than 24 hours and can be stored more than 5 weeks during multiple cleaning cycles. The produced microcleaners can also be reused, which reduces the cost of the process. During the reuse cycles the outer iron surface of the Fe/Pt microcleaners generates the in-situ, heterogeneous Fenton catalyst and releases a low concentration of iron into the treated water, while the mechanical properties also appear to be improved due to both its surface composition and structural changes. The microcleaners are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and finite-element modeling (FEM).

Keywords: Catalysts, Heterogeneous catalysis, Microcleaners, Micromotors, Nanorobots, Wastewater treatment


Sánchez, S., Soler, L., Katuri, J., (2015). Chemically powered micro- and nanomotors Angewandte Chemie - International Edition , 54, (4), 1414-1444

Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.

Keywords: Catalysis, Micromotors, Nanomotors, Robots, Self-propulsion