by Keyword: Collagen I

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

de la Mata, Ana, Mateos-Timoneda, Miguel A., Nieto-Miguel, Teresa, Galindo, Sara, López-Paniagua, Marina, Planell, Josep A., Engel, Elisabeth, Calonge, Margarita, (2019). Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells Colloids and Surfaces B: Biointerfaces 177, 121-129

Limbal epithelial stem cells (LESCs) are responsible for the renewal of corneal epithelium. Cultivated limbal epithelial transplantation is the current treatment of choice for restoring the loss or dysfunction of LESCs. To perform this procedure, a substratum is necessary for in vitro culturing of limbal epithelial cells and their subsequent transplantation onto the ocular surface. In this work, we evaluated poly-L/DL-lactic acid 70:30 (PLA) films functionalized with type IV collagen (col IV) as potential in vitro carrier substrata for LESCs. We first demonstrated that PLA-col IV films were biocompatible and suitable for the proliferation of human corneal epithelial cells. Subsequently, limbal epithelial cell suspensions, isolated from human limbal rings, were cultivated using culture medium that did not contain animal components. The cells adhered significantly faster to PLA-col IV films than to tissue culture plastic (TCP). The mRNA expression levels for the LESC specific markers, K15, P63α and ABCG2 were similar or greater (significantly in the case of K15) in limbal epithelial cells cultured on PLA-col IV films than limbal epithelial cells cultured on TCP. The percentage of cells expressing the corneal (K3, K12) and the LESC (P63α, ABCG2) specific markers was similar for both substrata. These results suggest that the PLA-col IV films promoted LESC attachment and helped to maintain their undifferentiated stem cell phenotype. Consequently, these substrata offer an alternative for the transplantation of limbal cells onto the ocular surface.

Keywords: Corneal epithelium, Collagen IV, Limbal stem cells, Polylactic acid, Tissue engineering

Hristova-Panusheva, K., Keremidarska-Markova, M., Altankov, G., Krasteva, N., (2017). Age-related changes in adhesive phenotype of bone marrow-derived mesenchymal stem cells on extracellular matrix proteins Journal of New Results in Science , 6, (1), 11-19

Mesenchymal stem cells (MSCs) are a promising cell source for cell-based therapies because of their self-renewal and multi-lineage differentiation potential. Unlike embryonic stem cells adult stem cells are subject of aging processes and the concomitant decline in their function. Age-related changes in MSCs have to be well understood in order to develop clinical techniques and therapeutics based on these cells. In this work we have studied the effect of aging on adhesive behaviour of bone marrow-derived MSC and MG- 63 osteoblastic cells onto three extracellular matrix proteins: fibronectin (FN), vitronectin (VN) and collagen I (Coll I). The results revealed substantial differences in adhesive behaviour of both cell types during 21 days in culture. Bone-marrow derived MSCs decreased significantly their adhesive affinity to all studied proteins after 7th day in culture with further incubation. In contrast, MG-63 cells, demonstrated a stable cell adhesive phenotype with high affinity to FN and Coll I and low affinity to vitronectin over the whole culture period. These data suggest that adhesive behaviour of MSCs to matrix proteins is affected by aging processes unlike MG-63 cells and the age-related changes have to be considered when expanding adult stem cells for clinical applications.

Keywords: Cell morphology, Cell attachment and spreading, Fibronectin, Vitronectin, Collagen I

Maneva-Radicheva, L., Ebert, U., Dimoudis, N., Altankov, G., (2008). Fibroblast remodeling of adsorbed collagen type IV is altered in contact with cancer cells Histology and Histopathology , 23, (7), 833-842

A series of co-culture experiments between fibroblasts and H-460 human lung carcinoma cells were performed to learn more about the fate of adsorbed type IV collagen (Coll IV). Fibroblasts were able to spatially rearrange Coll IV in a specific linear pattern, similar but not identical to the fibronectin (FN) fibrils. Coll IV partly co-aligns with fibroblast actin cytoskeleton and transiently co-localize with FN, as well as with beta 1 and a 2 integrin clusters, suggesting a cell-dependent process. We further found that this Coll IV reorganization is suppressed in contact with H460 cells. Zymography revealed strongly elevated MMP-2 activity in supernatants of co-cultures, but no activity when fibroblasts or cancer cells were cultured alone. Thus, we provide evidence that reorganization of substrate associated Coll IV is a useful morphological approach for in vitro studies on matrix remodeling activity during tumorigenesis.

Keywords: Adsorbed collagen IV reorganization, Fibroblasts and cancer cells co-culture, MMP-2