Publications

by Keyword: Dementia


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Lidón, Laia, Urrea, Laura, Llorens, Franc, Gil, Vanessa, Alvarez, Ignacio, Diez-Fairen, Monica, Aguilar, Miguel, Pastor, Pau, Zerr, Inga, Alcolea, Daniel, Lleó, Alberto, Vidal, Enric, Gavín, Rosalina, Ferrer, Isidre, Del Rio, Jose Antonio, (2020). Disease-specific changes in Reelin protein and mRNA in Nnurodegenerative diseases Cells 9, (5), 1252

Reelin is an extracellular glycoprotein that modulates neuronal function and synaptic plasticity in the adult brain. Decreased levels of Reelin activity have been postulated as a key factor during neurodegeneration in Alzheimer’s disease (AD) and in aging. Thus, changes in levels of full-length Reelin and Reelin fragments have been revealed in cerebrospinal fluid (CSF) and in post-mortem brains samples of AD patients with respect to non-AD patients. However, conflicting studies have reported decreased or unchanged levels of full-length Reelin in AD patients compared to control (nND) cases in post-mortem brains and CSF samples. In addition, a compelling analysis of Reelin levels in neurodegenerative diseases other than AD is missing. In this study, we analyzed brain levels of RELN mRNA and Reelin protein in post-mortem frontal cortex samples from different sporadic AD stages, Parkinson’s disease with dementia (PDD), and Creutzfeldt-Jakob disease (sCJD), obtained from five different Biobanks. In addition, we measured Reelin protein levels in CSF samples of patients with mild cognitive impairment (MCI), dementia, or sCJD diagnosis and a group of neurologically healthy cases. The results indicate an increase in RELN mRNA in the frontal cortex of advanced stages of AD and in sCJD(I) compared to controls. This was not observed in PDD and early AD stages. However, Reelin protein levels in frontal cortex samples were unchanged between nND and advanced AD stages and PDD. Nevertheless, they decreased in the CSF of patients with dementia in comparison to those not suffering with dementia and patients with MCI. With respect to sCJD, there was a tendency to increase in brain samples in comparison to nND and to decrease in the CSF with respect to nND. In conclusion, Reelin levels in CSF cannot be considered as a diagnostic biomarker for AD or PDD. However, we feel that the CSF Reelin changes observed between MCI, patients with dementia, and sCJD might be helpful in generating a biomarker signature in prodromal studies of unidentified dementia and sCJD.

Keywords: Reelin, Creutzfeldt-Jakob disease, Alzheimer’s disease, Parkinson’s disease dementia, a-synucleopathies, Cerebrospinal fluid


Diaz-Lucena, Daniela, Escaramis, G., Villar-Piqué, Anna, Hermann, Peter, Schmitz, Matthias, Varges, Daniela, Santana, Isabel, del Rio, José Antonio, Martí, E., Ferrer, Isidre, Baldeiras, I., Zerr, Inga, Llorens, Franc, (2020). A new tetra-plex fluorimetric assay for the quantification of cerebrospinal fluid β-amyloid42, total-tau, phospho-tau and α-synuclein in the differential diagnosis of neurodegenerative dementia Journal of Neurology 267, (9), 2567-2581

Background: Differential diagnosis of neurodegenerative dementia is currently supported by biomarkers including cerebrospinal fluid (CSF) tests. Among them, CSF total-tau (t-tau), phosphorylated tau (p-tau) and β-amyloid42 (Aβ42) are considered core biomarkers of neurodegeneration. In the present work, we hypothesize that simultaneous assessment of these biomarkers together with CSF α-synuclein (α-syn) will significantly improve the differential diagnostic of Alzheimer's disease and other dementias. To that aim, we characterized the analytical and clinical performance of a new tetra-plex immunoassay that simultaneously quantifies CSF Aβ42, t-tau, p-tau and α-syn in the differential diagnosis of neurodegenerative dementia. Methods: Biomarkers' concentrations were measured in neurological controls (n = 38), Alzheimer's disease (n = 35), Creutzfeldt-Jakob disease (n = 37), vascular dementia (n = 28), dementia with Lewy bodies/Parkinson's disease dementia (n = 27) and frontotemporal dementia (n = 34) using the new tetra-plex assay and established single-plex assays. Biomarker's performance was evaluated and diagnostic accuracy in the discrimination of diagnostic groups was determined using partial least squares discriminant analysis. Results: The tetra-plex assay presented accuracies similar to individual single-plex assays with acceptable analytical performance. Significant correlations were observed between tetra-plex and single-plex assays. Using partial least squares discriminant analysis, Alzheimer's disease and Creutzfeldt-Jakob disease were well differentiated, reaching high accuracies in the discrimination from the rest of diagnostic groups. Conclusions: The new tetra-plex assay coupled with multivariate analytical approaches becomes a valuable asset for the differential diagnosis of neurodegenerative dementia and related applications.

Keywords: Neurodegenerative dementia, Cerebrospinal fluid, Biomarker, Amyloid beta, Total-tau, Phospho-tau, α-Synuclein, Multiplexing


Garcia-Esparcia, P., Koneti, A., Rodríguez-Oroz, M. C., Gago, B., del Rio, J. A., Ferrer, Isidro, (2018). Mitochondrial activity in the frontal cortex area 8 and angular gyrus in Parkinson's disease and Parkinson's disease with dementia Brain Pathology 28, (1), 43-57

Altered mitochondrial function is characteristic in the substantia nigra in Parkinson's disease (PD). Information about mitochondria in other brain regions such as the cerebral cortex is conflicting mainly because most studies have not contemplated the possibility of variable involvement depending on the region, stage of disease progression and clinical symptoms such as the presence or absence of dementia. RT-qPCR of 18 nuclear mRNAs encoding subunits of mitochondrial complexes and 12 mRNAs encoding energy metabolism-related enzymes; western blotting of mitochondrial proteins; and analysis of enzymatic activities of complexes I, II, II, IV and V of the respiratory chain were assessed in frontal cortex area 8 and the angular gyrus of middle-aged individuals (MA), and those with incidental PD (iPD), long-lasting PD with parkinsonism without dementia (PD) and long-lasting PD with dementia (PDD). Up-regulation of several genes was found in frontal cortex area 8 in PD when compared with MA and in the angular gyrus in iPD when compared with MA. Marked down-regulation of genes encoding mitochondrial subunits and energy metabolism-related enzymes occurs in frontal cortex but only of genes coding for energy metabolism-related enzymes in the angular gyrus in PDD. Significant decrease in the protein expression levels of several mitochondrial subunits encoded by these genes occurs in frontal cortex area 8 and angular gyrus in PDD. Moreover, expression of MT-ND1 which is encoded by mitochondrial DNA is also reduced in PDD. Reduced enzymatic activity of complex III in frontal cortex area 8 and angular gyrus is observed in PD, but dramatic reduction in the activity of complexes I, II, II and IV in both regions characterizes PDD. Dementia in the context of PD is linked to region-specific deregulation of genomic genes encoding subunits of mitochondrial complexes and to marked reduction in the activity of mitochondrial complexes I, II, III and IV.

Keywords: Cerebral cortex, Dementia, Energy metabolism, Incidental PD, Mitochondria, Oxidative phosphorylation, Parkinson disease, PDD, Respiratory chain


Garcia-Esparcia, Paula, López-González, Irene, Grau-Rivera, Oriol, García-Garrido, María Francisca, Konetti, Anusha, Llorens, Franc, Zafar, Saima, Carmona, Margarita, del Rio, José Antonio, Zerr, Inga, Gelpi, Ellen, Ferrer, Isidro, (2017). Dementia with Lewy Bodies: Molecular pathology in the frontal cortex in typical and rapidly progressive forms Frontiers in Neurology 8, Article 89

Objectives: The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods: Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results: The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion: Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.

Keywords: Dementia with Lewy bodies, Alzheimer’s disease, α-synuclein, Mitochondria, Protein synthesis, Inflammation, β-amyloid, Olfactory receptors


Iranzo, A., Isetta, V., Molinuevo, J. L., Serradell, M., Navajas, D., Farre, R., Santamaria, J., (2010). Electroencephalographic slowing heralds mild cognitive impairment in idiopathic REM sleep behavior disorder Sleep Medicine , 11, (6), 534-539

Objective: Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD) may show electroencephalographic (EEG) slowing reflecting cortical dysfunction and are at risk for developing neurological conditions characterized by cognitive dysfunction including mild cognitive impairment (MCI), dementia with Lewy bodies and Parkinson's disease with associated dementia. We hypothesized that those IRBD patients who later developed MCI had pronounced cortical EEG slowing at presentation. Methods: Power EEG spectral analysis was blindly quantified from the polysomnographic studies of 23 IRBD patients without cognitive complaints and 10 healthy controls without RBD. After a mean clinical follow-up of 2.40 +/- 1.55 years, 10 patients developed MCI (RBD + MCI) and the remaining 13 remained idiopathic. Results: Patients with RBD + MCI had marked EEG slowing (increased delta and theta activity) in central and occipital regions during wakefulness and REM sleep, particularly in the right hemisphere, when compared with controls and, to a lesser extent, with IRBD subjects who remained idiopathic. The EEG spectral pattern of the RBD + MCI group was similar to that seen in patients with dementia with Lewy bodies and Parkinson's disease associated with dementia. Conclusion: Our findings suggest that the presence of marked EEG slowing on spectral analysis might be indicative of the short-term development of MCI in patients initially diagnosed with IRBD.

Keywords: Idiopathic REM sleep behavior disorder, Power EEG spectral analysis, Mild cognitive impairment, REM sleep, Parkinson's disease, Dementia with Lewy bodies