by Keyword: Domain

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Urrea, Laura, Ferrer, Isidro, Gavín, Rosalina, del Río, José Antonio, (2017). The cellular prion protein (PrPC) as neuronal receptor for α-synuclein Prion , 11, (4), 226-233

The term ‘prion-like’ is used to define some misfolded protein species that propagate intercellularly, triggering protein aggregation in recipient cells. For cell binding, both direct plasma membrane interaction and membrane receptors have been described for particular amyloids. In this respect, emerging evidence demonstrates that several β-sheet enriched proteins can bind to the cellular prion protein (PrPC). Among other interactions, the physiological relevance of the binding between β-amyloid and PrPC has been a relevant focus of numerous studies. At the molecular level, published data point to the second charged cluster domain of the PrPC molecule as the relevant binding domain of the β-amyloid/PrPC interaction. In addition to β-amyloid, participation of PrPC in binding α-synuclein, responsible for neurodegenerative synucleopathies, has been reported. Although results indicate relevant participation of PrPC in the spreading of α-synuclein in living mice, the physiological relevance of the interaction remains elusive. In this comment, we focus our attention on summarizing current knowledge of PrPC as a receptor for amyloid proteins and its physiological significance, with particular focus on α-synuclein.

Keywords: α-synuclein, Charged cluster domain, Interneuronal transport, LAG3, Neurodegeneration, PrPC, Parkinson disease

A. R. Dalton, J., Lans, I., Rovira, X., Malhaire, F., Gómez-Santacana, X., Pittolo, S., Gorostiza, P., Llebaria, A., Goudet, C., Pin, J-P., Giraldo, J., (2016). Shining light on an mGlu5 photoswitchable NAM: A theoretical perspective Current Neuropharmacology , 14, (5), 441-454

Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.

Keywords: Allosteric modulation, Docking, Metabotropic glutamate receptor, Molecular dynamics, Mutation, Protein structure, Transmembrane domain

Reginensi, Diego, Carulla, Patricia, Nocentini, Sara, Seira, Oscar, Serra-Picamal, Xavier, Torres-Espín, Abel, Matamoros-Angles, Andreu, Gavín, Rosalina, Moreno-Flores, María Teresa, Wandosell, Francisco, Samitier, Josep, Trepat, Xavier, Navarro, Xavier, del Río, José Antonio, (2015). Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord Cellular and Molecular Life Sciences , 72, (14), 2719-2737

Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.

Keywords: Olfactory ensheathing cells, Traction force microscopy, Chondroitin sulphate proteoglycans, Cell migration, Nogo receptor ectodomain

Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994

Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.

Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards

Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798

Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.

Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis

Esteban, O., Christ, D., Stock, D., (2013). Purification of molecular machines and nanomotors using phage-derived monoclonal antibody fragments Protein Nanotechnology - Methods in Molecular Biology (ed. Gerrard, J. A.), Humana Press (New York, USA) 996, 203-217

Molecular machines and nanomotors are sophisticated biological assemblies that convert potential energy stored either in transmembrane ion gradients or in ATP into kinetic energy. Studying these highly dynamic biological devices by X-ray crystallography is challenging, as they are difficult to produce, purify, and crystallize. Phage display technology allows us to put a handle on these molecules in the form of highly specific antibody fragments that can also stabilize conformations and allow versatile labelling for electron microscopy, immunohistochemistry, and biophysics experiments. Here, we describe a widely applicable protocol for selecting high-affinity monoclonal antibody fragments against a complex molecular machine, the A-type ATPase from T. thermophilus that allows fast and simple purification of this transmembrane rotary motor from its wild-type source. The approach can be readily extended to other integral membrane proteins and protein complexes as well as to soluble molecular machines and nanomotors.

Keywords: ATP synthase, Crystallization, Domain antibodies, Electron microscopy, Labelling, Membrane proteins, Monoclonal antibody fragments, Phage display, Protein purification, X-ray crystallography

Garde, A., Giraldo, B.F., Jané, R., Latshang, T.D., Turk, A.J., Hess, T., Bosch, M-.M., Barthelmes, D., Hefti, J.P., Maggiorini, M., Hefti, U., Merz, T.M., Schoch, O.D., Bloch, K.E., (2012). Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 707-710

High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1st and 2nd ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO2 and periodic breathing cycles significantly increased with acclimatization (p-value <; 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO2, through a significant negative correlation (p-value <; 0.01). Higher Pm is observed at climbing periods visually labeled as PB with >; 5 periodic breathing cycles through a significant positive correlation (p-value <; 0.01). Our data demonstrate that quantification of the respiratory volum- signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.

Keywords: Frequency domain analysis, Frequency modulation, Heart, Sleep apnea, Ventilation, Visualization, Cardiology, Medical disorders, Medical signal processing, Plethysmography, Pneumodynamics, Sensitivity analysis, Sleep, Spectral analysis, Cheyne-Stokes respiration, Climbing periods, Dataset, Heart failure patients, High altitude PB, High altitude periodic breathing, Hypobaric hypoxia, Linear discriminant analysis, Pathophysiologic aspects, Physical activity, Physiologic mechanisms, Power spectral density, Receiver operating characteristic curve, Respiratory control, Respiratory frequency, Respiratory inductive plethysmography, Respiratory pattern, Respiratory volume signal, Sleep apnea, Spectral analysis, Spectral parameters

van Zanten, T. S., Garcia-Parajo, M. F., (2012). Super-resolution near-field optical microscopy Comprehensive Biophysics (ed. Egelman, E. H.), Elsevier (Desdren, Germany) Volume 2: Biophysical Techniques for Characterization of Cells, 144-164

Near-field optical microscopy is a technique not limited by the laws of diffraction that enables simultaneous high-resolution fluorescence and topographic measurements at the nanometer scale. This chapter highlights the intrinsic advantages of near-field optics in the study of cellular structures. The first part of the chapter lays the foundations of the near-field concept and technical implementation of near-field scanning optical microscopy (NSOM), whereas the second part of the chapter focuses on applications of NSOM to the study of model membranes and cellular structures on the plasma membrane. The last part of the chapter discusses further directions of near-field optics, including optical antennas and fluorescence correlation spectroscopy approaches in the near-field regime.

Keywords: Biological membranes, Cell membrane nanoscale compartmentalization, Cellular nanodomains, Fluorescence correlation spectroscopy in reduced volumes, Immunoreceptor imaging, Lipid rafts, Near-field scanning optical microscopy, Optical nano-antennas, Shear force imaging, Single molecule detection, Super-resolution microscopy

Cordeiro, T. N., Schmidt, H., Madrid, C., Juarez, A., Bernado, P., Griesinger, C., Garcia, J., Pons, M., (2011). Indirect DNA readout by an H-NS related protein: Structure of the DNA complex of the C-terminal domain of Ler PLoS Pathogens Plos Pathogens , 7, (11), 12

Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family.

Keywords: Enteropathogenic escherichia-coli, Nucleoid-associated protein, Nmr structure determination, Encoded regulator ler, Controls expression, Binding domain

van Zanten, Thomas S., Lopez-Bosque, M. J . , Garcia-Parajo, M. F., (2010). Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna Small 6, (2), 270-275

Optical antennas that confine and enhance electromagnetic fields in a nanometric region hold great potential for nanobioimaging and biosensing. Probe-based monopole optical antennas are fabricated to enhance fields localized to <30 nm near the antenna apex in aqueous conditions. These probes are used under appropriate excitation antenna conditions to image individual antibodies with an unprecedented resolution of 26 ± 4 nm and virtually no surrounding background. On intact cell membranes in physiological conditions, the obtained resolution is 30 ± 6 nm. Importantly, the method allows individual proteins to be distinguished from nanodomains and the degree of clustering to be quantified by directly measuring physical size and intensity of individual fluorescent spots. Improved antenna geometries should lead to true live cell imaging below 10-nm resolution with position accuracy in the subnanometric range.

Keywords: Cell membranes, Cell receptors, Focused ion beam milling, Nanodomains, Optical antennas

van Zanten, T. S., Cambi, A., Garcia-Parajo, M. F., (2010). A nanometer scale optical view on the compartmentalization of cell membranes Biochimica et Biophysica Acta - Biomembranes , 1798, (4), 777-787

For many years, it was believed that the laws of diffraction set a fundamental limit to the spatial resolution of conventional light microscopy. Major developments, especially in the past few years, have demonstrated that the diffraction barrier can be overcome both in the near- and far-field regime. Together with dynamic measurements, a wealth of new information is now emerging regarding the compartmentalization of cell membranes. In this review we focus on optical methods designed to explore the nanoscale architecture of the cell membrane, with a focal point on near-field optical microscopy (NSOM) as the first developed technique to provide truly optical super-resolution beyond the diffraction limit of light. Several examples illustrate the unique capabilities offered by NSOM and highlight its usefulness on cell membrane studies, complementing the palette of biophysical techniques available nowadays.

Keywords: Membrane nanodomain, Lipid raft, Single molecule detection, Near-field scanning optical microscopy, Super-resolution optical microscopy

Roca-Cusachs, P., Gauthier, N. C., del Rio, A., Sheetz, M. P., (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction Proceedings of the National Academy of Sciences of the United States of America 106, (38), 16245-16250

A key molecular link between cells and the extracellular matrix is the binding between fibronectin and integrins alpha(5)beta(1) and alpha(v)beta(3). However, the roles of these different integrins in establishing adhesion remain unclear. We tested the adhesion strength of fibronectin-integrin-cytoskeleton linkages by applying physiological nanonewton forces to fibronectin-coated magnetic beads bound to cells. We report that the clustering of fibronectin domains within 40 nm led to integrin alpha(5)beta(1) recruitment, and increased the ability to sustain force by over six-fold. This force was supported by alpha(5)beta(1) integrin clusters. Importantly, we did not detect a role of either integrin alpha(v)beta(3) or talin 1 or 2 in maintaining adhesion strength. Instead, these molecules enabled the connection to the cytoskeleton and reinforcement in response to an applied force. Thus, high matrix forces are primarily supported by clustered alpha(5)beta(1) integrins, while less stable links to alpha(v)beta(3) integrins initiate mechanotransduction, resulting in reinforcement of integrin-cytoskeleton linkages through talin-dependent bonds.

Keywords: Cell-adhesion, Mechanical force, Vinculin-binding, Fibronectin, Activation, Dynamics, Domain, Alpha-v-beta-3, Translocation, Bonds

Cho, S., Castellarnau, M., Samitier, J., Thielecke, H., (2008). Dependence of impedance of embedded single cells on cellular behaviour Sensors 8, (2), 1198-1211

Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour.

Keywords: Frequency-domain, Spectroscopy, Erythrocytes, Biosensor, Membrane, System