Publications

by Keyword: Glucose


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Romeo, Agostino, Moya, Ana, Leung, Tammy S., Gabriel, Gemma, Villa, Rosa, Sánchez, Samuel, (2018). Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis Applied Materials Today 10, 133-141

Here, we present a flexible and low-cost inkjet printed electrochemical sensor for enzyme-free glucose analysis. Versatility, short fabrication time and low cost make inkjet printing a valuable alternative to traditional sensor manufacturing techniques. We fabricated electro-chemical glucose sensors by inkjet printing electrodes on a flexible polyethylene terephthalate substrate. CuO microparticles were used to modify our electrodes, leading to a sensitive, stable and cost-effective platform for non-enzymatic detection of glucose. Selectivity, reproducibility, and life-time provided by the CuO functionalization demonstrated that these sensors are reliable tools for personalized diagnostics and self-assessment of an individual's health. The detection of glucose at concentrations matching that of tear fluid allows us to envisage applications in ocular diagnostics, where painless and non-invasive monitoring of diabetes can be achieved by analyzing glucose contained in tears.

Keywords: Inkjet printing, Non-enzymatic sensor, Glucose, Copper oxide, Tear analysis


Santano-Martínez, R., Leiva-González, R., Avazbeigi, M., Gutiérrez-Gálvez, A., Marco, S., (2013). Identification of molecular properties coding areas in rat's olfactory bulb by rank products Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing BIOSIGNALS 2013 , SciTePress (Barcelona, Spain) , 383-387

Neural coding of chemical information is still under strong debate. It is clear that, in vertebrates, neural representation in the olfactory bulb is a key for understanding a putative odour code. To explore this code, in this work we have studied a public dataset of radio images of 2-Deoxyglucose uptake (2-DG) in the olfactory bulb of rats in response to diverse odorants using univariate pixel selection algorithms: rank-products and Mann-Whitney U (MWU) test. Initial results indicate that some chemical properties of odorants preferentially activate certain areas of the rat olfactory bulb. While non-parametric test (MWU) has difficulties to detect these regions, rank-product provides a higher power of detection.

Keywords: 2-Deoxyglucose uptake, Chemotopy, Feature selection, Odour coding, Olfaction, Olfactory bulb


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Falasconi, M., Gutierrez, A., Auffarth, B., Sberveglieri, G., Marco, S., (2009). Cluster analysis of the rat olfactory bulb activity in response to different odorants Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 169-172

With the goal of deepen in the understanding of coding of chemical information in the olfactory system, a large data set consisting of rat's olfactory bulb activity values in response to several different volatile compounds has been analyzed by fuzzy c-means clustering methods. Clustering should help to discover groups of glomeruli that are similary activated according to their response profiles across the odorants. To investigate the significance of the achieved fuzzy partitions we developed and applied a novel validity approach based on cluster stability. Our results show certain level of glomerular clustering in the olfactory bulb and indicate that exist a main chemo-topic subdivision of the glomerular layer in few macro-area which are rather specific to particular functional groups of the volatile molecules.

Keywords: Olfactory bulb, 2-deoxyglucose mapping, Olfactory coding, Cluster analysis, Cluster validity