Publications

by Keyword: Glutamate Receptor


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Franco, Rafael, Aguinaga, David, Reyes, Irene, Canela, Enric I., Lillo, Jaume, Tarutani, Airi, Hasegawa, Masato, del Ser-Badia, Anna, del Rio, José A., Kreutz, Michael R., Saura, Carlos A., Navarro, Gemma, (2018). N-methyl-D-aspartate receptor link to the MAP kinase pathway in cortical and hippocampal neurons and microglia Is dependent on calcium sensors and Is blocked by α-Synuclein, Tau, and phospho-Tau in non-transgenic and transgenic APPSw,Ind Mice Frontiers in Molecular Neuroscience 11, (273), Article 273

N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer’s disease model. Interestingly, a very marked increase in NMDAR–NCS1 complexes was identified in neurons and a marked increase of both NMDAR–NCS1 and NMDAR–CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor–calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.

Keywords: Alzheimer’s disease, Calmodulin, Calneuron-1, Caldendrin, NCS1, Extracellular signal-regulated kinase, Glutamate receptor, Proximity ligation assay


A. R. Dalton, J., Lans, I., Rovira, X., Malhaire, F., Gómez-Santacana, X., Pittolo, S., Gorostiza, P., Llebaria, A., Goudet, C., Pin, J-P., Giraldo, J., (2016). Shining light on an mGlu5 photoswitchable NAM: A theoretical perspective Current Neuropharmacology , 14, (5), 441-454

Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.

Keywords: Allosteric modulation, Docking, Metabotropic glutamate receptor, Molecular dynamics, Mutation, Protein structure, Transmembrane domain


Izquierdo-Serra, Mercè, Trauner, Dirk, Llobet, Artur, Gorostiza, Pau, (2013). Optical control of calcium-regulated exocytosis Biochimica et Biophysica Acta (BBA) - General Subjects , 1830, (3), 2853-2860

Background Neurons signal to each other and to non-neuronal cells as those in muscle or glands, by means of the secretion of neurotransmitters at chemical synapses. In order to dissect the molecular mechanisms of neurotransmission, new methods for directly and reversibly triggering neurosecretion at the presynaptic terminal are necessary. Here we exploit the calcium permeability of the light-gated channel LiGluR in order to reversibly manipulate cytosolic calcium concentration, thus controlling calcium-regulated exocytosis. Methods Bovine chromaffin cells expressing LiGluR were stimulated with light. Exocytic events were detected by amperometry or by whole-cell patch-clamp to quantify membrane capacitance and calcium influx. Results Amperometry reveals that optical stimulation consistently triggers exocytosis in chromaffin cells. Secretion of catecholamines can be adjusted between zero and several Hz by changing the wavelength of illumination. Differences in secretion efficacy are found between the activation of LiGluR and native voltage-gated calcium channels (VGCCs). Our results show that the distance between sites of calcium influx and vesicles ready to be released is longer when calcium influx is triggered by LiGluR instead of native VGCCs. Conclusion and general significance LiGluR activation directly and reversibly increases the intracellular calcium concentration. Light-gated calcium influx allows for the first time to control calcium-regulated exocytosis without the need of applying depolarizing solutions or voltage clamping in chromaffin cells. Thus, LiGluR is a useful tool to study the secretory mechanisms and their spatiotemporal patterns in neurotransmission, and opens a window to study other calcium-dependent processes such as muscular contraction or cell migration.

Keywords: Optical control, Calcium, Exocytosis, Light-gated glutamate receptor (LiGluR), Neurotransmission, Optogenetics


Llorens, F., Del Rio, J. A., (2012). Unraveling the neuroprotective mechanisms of PrPC in excitotoxicity Prion , 6, (3), 245-251

Knowledge of the natural roles of cellular prion protein (PrPC) is essential to an understanding of the molecular basis of prion pathologies. This GPIanchored protein has been described in synaptic contacts, and loss of its synaptic function in complex systems may contribute to the synaptic loss and neuronal degeneration observed in prionopathy. In addition, Prnp knockout mice show enhanced susceptibility to several excitotoxic insults, GABAA receptor-mediated fast inhibition was weakened, LTP was modified and cellular stress increased. Although little is known about how PrPC exerts its function at the synapse or the downstream events leading to PrPCmediated neuroprotection against excitotoxic insults, PrPC has recently been reported to interact with two glutamate receptor subunits (NR2D and GluR6/7). In both cases the presence of PrPC blocks the neurotoxicity induced by NMDA and Kainate respectively. Furthermore, signals for seizure and neuronal cell death in response to Kainate in Prnp knockout mouse are associated with JNK3 activity, through enhancing the interaction of GluR6 with PSD-95. In combination with previous data, these results shed light on the molecular mechanisms behind the role of PrPC in excitotoxicity. Future experimental approaches are suggested and discussed.

Keywords: Prion protein, Excitotoxicity, Neuroprotection, Glutamate receptors, Synapse, prionopathy


Gorostiza, P., Isacoff, E.Y., (2011). Photoswitchable ligand-gated ion channels Photosensitive molecules for controlling biological function (ed. Chambers, J. J. , Kramer, R. H.), Springer (Saskatoon, Canada) 55, 267-285

Ligand-activated proteins can be controlled with light by means of synthetic photoisomerizable tethered ligands (PTLs). The application of PTLs to ligand-gated ion channels, including the nicotinic acetylcholine receptor and ionotropic glutamate receptors, is reviewed with emphasis on rational photoswitch design and the mechanisms of optical switching. Recently reported molecular dynamic methods allow simulation with high reliability of novel PTLs for any ligand-activated protein whose structure is known.

Keywords: Nicotinic acetylcholine receptor, Kainate receptor, Glutamate receptor, Photoisomerizable tether ligand (PTL), Optical switch, Nanotoggle, Azobenzene, Neurobiology,, Nanoengineering, Nanomedicine


Rangel, A., Madroñal, N., Gruart i Massó, A., Gavin,, Llorens, Sumoy, Torres, Delgado-Gar, Del Rio, J. A., (2009). Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice PLoS ONE 4, (10), e7592 (1-14)

Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Methodology/Principal Findings: Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp 2/2 and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp 2/2 mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using IlluminaTM microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp 2/2 and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp 2/2 and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimer’s disease. However, our results indicate that a ‘‘gain of function’’ strategy in Alzheimer’s disease, or a ‘‘loss of function’’ in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.

Keywords: Prions, Prionopathies, Natural cellular prion protein (PrPc), Hippocampus, GABA (A) receptor, Glutamate Receptor