Publications

by Keyword: Indexes


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Rodriguez, J., Schulz, S., Voss, A., Giraldo, B. F., (2020). Cardiorespiratory and vascular variability analysis to classify patients with ischemic and dilated cardiomyopathy* Engineering in Medicine & Biology Society (EMBC) 42nd Annual International Conference of the IEEE , IEEE (Montreal, Canada) , 2764-2767

Heart diseases are the leading cause of death in developed countries. Ascertaining the etiology of cardiomyopathies is still a challenge. The objective of this study was to classify cardiomyopathy patients through cardio, respiratory and vascular variability analysis, considering the vascular activity as the input and output of the baroreflex response. Forty-one cardiomyopathy patients (CMP) classified as ischemic (ICM, 24 patients) and dilated (DCM, 17 patients) were analyzed. Thirty-nine elderly control subjects (CON) were used as reference. From the electrocardiographic, respiratory flow, and blood pressure signals, following temporal series were extracted: beat-to-beat intervals (BBI), total respiratory cycle time series (TT), and end– systolic (SBP) and diastolic (DBP) blood pressure amplitudes, respectively. Three-dimensional representation of the cardiorespiratory and vascular activities was characterized geometrically, by fitting a polygon that contains 95% of data, and by statistical descriptive indices. The best classifiers were used to build support vector machine models. The optimal model to classify ICM versus DCM patients achieved 92.7% accuracy, 94.1% sensitivity, and 91.7% specificity. When comparing CMP patients and CON subjects, the best model achieved 86.2% accuracy, 82.9% sensitivity, and 89.7% specificity. These results suggest a limited ability of cardiac and respiratory systems response to regulate the vascular variability in these patients.

Keywords: Time series analysis, Support vector machines, Blood pressure, Sensitivity, Indexes, Electrocardiography, Kernel


Solà-Soler, J., Giraldo, B. F., Jané, R., (2019). Linear mixed effects modelling of oxygen desaturation after sleep apneas and hypopneas: A pilot study Engineering in Medicine and Biology Society (EMBC) 41st Annual International Conference of the IEEE , IEEE (Berlín, Germany) , 5731-5734

Obstructive Sleep Apnea severity is commonly determined after a sleep polysomnographic study by the Apnea-Hypopnea Index (AHI). This index does not contain information about the duration of events, and weights apneas and hypopneas alike. Significant differences in disease severity have been reported in patients with the same AHI. The aim of this work was to study the effect of obstructive event type and duration on the subsequent oxygen desaturation (SaO2) by mixed-effects models. These models allow continuous and categorical independent variables and can model within-subject variability through random effects. The desaturation depth dSaO2, desaturation duration dtSaO2 and desaturation area dSaO2A were analyzed in the 2022 apneas and hypopneas of eight severe patients. A mixed-effects model was defined to account for the influence of event duration (AD), event type, and their interaction on SaO2 parameters. A two-step backward model reduction process was applied for random and fixed effects optimization. The optimum model obtained for dtSaO2 suggests an almost subject-independent proportion increase with AD, which did not significantly change in apneas as compared to hypopneas. The optimum model for dSaO2 reveals a significantly higher increase as a function of AD in apneas than hypopneas. Dependence of on event type and duration was different in every subject, and a subject-specific model could be obtained. The optimum model for SaO2A combines the effects of the other two. In conclusion, the proposed mixed-effects models for SaO2 parameters allow to study the effect of respiratory event duration and type, and to include repeated events within each subject. This simple model can be easily extended to include the contribution of other important factors such as patient severity, sleep stage, sleeping position, or the presence of arousals.

Keywords: Biological system modeling, Sleep apnea, Mathematical model, Indexes, Reduced order systems, Optimization


Calvo, M., Jané, R., (2019). Sleep stage influence on the autonomic modulation of sleep apnea syndrome 2019 Computing in Cardiology (CinC) , IEEE (Singapore, Singapore) , 1-4

Hypoxia induced by obstructive sleep apnea (OSA) leads to the deregulation of the autonomic nervous system (ANS), resulting in an abnormally increased sympathetic activity. Since ANS modulation varies throughout the night, notably for each sleep stage, the hypno-gram and heart rate signals of 81 OSA patients were collected during a polysomnography. They were classified as mild-moderate (n=44) or severe (n=37) based on their apnea-hypopnea index (AHI). Spectral heart rate variability (HRV) series were extracted by a time-frequency approach. These series were then averaged for each sleep stage, in order to compare the sympathetic modulation of mild-moderate and severe patients at the following phases: rapid eye movement (REM), S1, S2 and SWS (slow wave sleep). According to normalized power at the low-frequency band (LFnu) values, severe OSA seems to be associated with an increased sympathetic modulation at non-REM sleep. Moreover, a decreased autonomic variability throughout the night may be related to a reduced adaptability of the cardiovascular system, characterizing a more advanced stage of the disease. These results provide further evidence for the role of autonomic alterations induced by hypoxia, suggesting the use of HRV analysis, together with AHI, for the study of OSA severity.

Keywords: Sleep apnea, Heart rate variability, Modulation, Indexes, Standards


Sola-Soler, J., Giraldo, B. F., Fiz, J. A., Jane, R., (2017). Relationship between heart rate excursion and apnea duration in patients with Obstructive Sleep Apnea Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 1539-1542

Obstructive Sleep Apnea (OSA) is a sleep disorder with a high prevalence in the general population. It is a risk factor for many cardiovascular diseases, and an independent risk factor for cerebrovascular diseases such as stroke. After an apnea episode, both arterial blood pressure and cerebral blood flow velocity change in function of the apnea duration (AD). We hypothesized that the relative excursion in heart rate (AHR), defined as the percentage difference between the maximum and the minimum heart rate values associated to an obstructive apnea event, is also related to AD. In this work we studied the relationship between apnea-related AHR and AD in a population of eight patients with severe OSA. AHR and AD showed a moderate but statistically significant correlation (p <; 0.0001) in a total of 1454 obstructive apneas analyzed. The average heart rate excursion for apneas with AD ≥ 30s (ΔHR = 31.29 ± 6.64%) was significantly greater (p = 0.0002) than for apneas with AD ∈ [10,20)s (ΔHR = 18.14±3.08%). We also observed that patients with similar Apnea-Hypopnea Index (AHI) may exhibit remarkably different distributions of AHR and AD, and that patients with a high AHI need not have a higher average AHR than others with a lower severity index. We conclude that the overall apnea-induced heart rate excursion is partially explained by the duration of apnoeic episodes, and it may be a simple measure of the cardiovascular stress associated with OSA that is not directly reflected in the AHI.

Keywords: Heart rate, Sleep apnea, Correlation, Indexes, Sociology, Blood vessels


Chaparro, J. A., Giraldo, B. F., (2014). Power index of the inspiratory flow signal as a predictor of weaning in intensive care units Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 78-81

Disconnection from mechanical ventilation, called the weaning process, is an additional difficulty in the management of patients in intensive care units (ICU). Unnecessary delays in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we propose an extubation index based on the power of the respiratory flow signal (Pi). A total of 132 patients on weaning trials were studied: 94 patients with successful trials (group S) and 38 patients who failed to maintain spontaneous breathing and were reconnected (group F). The respiratory flow signals were processed considering the following three stages: a) zero crossing detection of the inspiratory phase, b) inflection point detection of the flow curve during the inspiratory phase, and c) calculation of the signal power on the time instant indicated by the inflection point. The zero crossing detection was performed using an algorithm based on thresholds. The inflection points were marked considering the zero crossing of the second derivative. Finally, the inspiratory power was calculated from the energy contained over the finite time interval (between the instant of zero crossing and the inflection point). The performance of this parameter was evaluated using the following classifiers: logistic regression, linear discriminant analysis, the classification and regression tree, Naive Bayes, and the support vector machine. The best results were obtained using the Bayesian classifier, which had an accuracy, sensitivity and specificity of 87%, 90% and 81% respectively.

Keywords: Bayes methods, Bayesian classifier, Indexes, Logistics, Niobium, Regression tree analysis, Support vector machines, Ventilation


Chaparro, J.A., Giraldo, B.F., Caminal, P., Benito, S., (2012). Performance of respiratory pattern parameters in classifiers for predict weaning process Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 4349-4352

Weaning trials process of patients in intensive care units is a complex clinical procedure. 153 patients under extubation process (T-tube test) were studied: 94 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 21 patients with successful test but that had to be reintubated before 48 hours (group R). The respiratory pattern of each patient was characterized through the following time series: inspiratory time (TI), expiratory time (TE), breathing cycle duration (TTot), tidal volume (VT), inspiratory fraction (TI/TTot), half inspired flow (VT/TI), and rapid shallow index (f/VT), where f is respiratory rate. Using techniques as autoregressive models (AR), autoregressive moving average models (ARMA) and autoregressive models with exogenous input (ARX), the most relevant parameters of the respiratory pattern were obtained. We proposed the evaluation of these parameters using classifiers as logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM) and classification and regression tree (CART) to discriminate between patients from groups S, F and R. An accuracy of 93% (98% sensitivity and 82% specificity) has been obtained using CART classification.

Keywords: Accuracy, Indexes, Logistics, Regression tree analysis, Support vector machines, Time series analysis, Autoregressive moving average processes, Medical signal processing, Pattern classification, Pneumodynamics, Regression analysis, Sensitivity, Signal classification, Support vector machines, Time series, SVM, T-tube testing, Autoregressive models-with-exogenous input, Autoregressive moving average models, Breathing cycle duration, Classification-and-regression tree, Expiratory time, Extubation process, Half inspired flow, Inspiratory fraction, Inspiratory time, Intensive care units, Linear discriminant analysis, Logistic regression, Rapid shallow index, Respiratory pattern parameter performance, Sensitivity, Spontaneous breathing, Support vector machines, Tidal volume, Time 48 hr, Time series, Weaning process classifiers


Hernansanz, A., Amat, J., Casals, A., (2012). Virtual Robot: A new teleoperation paradigm for minimally invasive robotic surgery IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 749-754

This paper presents a novel teleoperation paradigm, the Virtual Robot (VR), focused on facilitating the surgeon tasks in minimally invasive robotic surgery. The VR has been conceived to increase the range of applicability of traditional master slave teleoperation architectures by means of an automatic cooperative behavior that assigns the execution of the ongoing task to the most suitable robot. From the user's point of view, the VR internal operation must be automatic and transparent. A set of evaluation indexes have been developed to obtain the suitability of each robot as well as an algorithm to determine the optimal instant of time to execute a task transfer. Several experiments demonstrate the usefulness of the VR, as well as indicates the next steps of the research.

Keywords: Cameras, Collision avoidance, Indexes, Joints, Robots, Surgery, Trajectory, Medical robotics, Surgery, Telerobotics, VR internal operation, Automatic cooperative behavior, Evaluation indexes, Master slave teleoperation architectures, Minimally invasive robotic surgery, Task transfer, Virtual robot