Publications

by Keyword: Joints


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Giraldo, B. F., Rodriguez, J., Caminal, P., Bayes-Genis, A., Voss, A., (2015). Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 306-309

Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyophaty patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyophaties were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopaties, obtaining an accuracy of 85.7%.

Keywords: Blood pressure, Electrocardiography, Joints, Kernel, Principal component analysis, Support vector machines, Time series analysis


Rajasekaran, V., Aranda, J., Casals, A., (2015). Compliant gait assistance triggered by user intention Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3885-3888

An automatic gait initialization strategy based on user intention sensing in the context of rehabilitation with a lower-limb wearable robot is proposed and evaluated. The proposed strategy involves monitoring the human-orthosis interaction torques and initial position deviation to determine the gait initiation instant and to modify orthosis operation for gait assistance, when needed. During gait, the compliant control algorithm relies on the adaptation of the joints' stiffness in function of their interaction torques and their deviation from the desired trajectories, while maintaining the dynamic stability. As a reference input, the average of a set of recorded gaits obtained from healthy subjects is used. The algorithm has been tested with five healthy subjects showing its efficient behavior in initiating the gait and maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from incomplete Spinal cord injury and Stroke.

Keywords: Biomedical monitoring, Exoskeletons, Joints, Knee, Legged locomotion, Trajectory, Exoskeleton, adaptive control, gait assistance, gait initiation, rehabilitation, wearable robot


Mur, O., Frigola, M., Casals, A., (2015). Modelling daily actions through hand-based spatio-temporal features ICAR 2015 International Conference on Advanced Robotics , IEEE (Istanbul, Turkey) , 478-483

In this paper, we propose a new approach to domestic action recognition based on a set of features which describe the relation between poses and movements of both hands. These features represent a set of basic actions in a kitchen in terms of the mimics of the hand movements, without needing information of the objects present in the scene. They address specifically the intra-class dissimilarity problem, which occurs when the same action is performed in different ways. The goal is to create a generic methodology that enables a robotic assistant system to recognize actions related to daily life activities and then, be endowed with a proactive behavior. The proposed system uses depth and color data acquired from a Kinect-style sensor and a hand tracking system. We analyze the relevance of the proposed hand-based features using a state-space search approach. Finally, we show the effectiveness of our action recognition approach using our own dataset.

Keywords: Histograms, Joints, Robot sensing systems, Thumb, Tracking, Human activity recognition, Disable and elderly assistance


Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103

The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.

Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton


Hernansanz, A., Amat, J., Casals, A., (2012). Virtual Robot: A new teleoperation paradigm for minimally invasive robotic surgery IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 749-754

This paper presents a novel teleoperation paradigm, the Virtual Robot (VR), focused on facilitating the surgeon tasks in minimally invasive robotic surgery. The VR has been conceived to increase the range of applicability of traditional master slave teleoperation architectures by means of an automatic cooperative behavior that assigns the execution of the ongoing task to the most suitable robot. From the user's point of view, the VR internal operation must be automatic and transparent. A set of evaluation indexes have been developed to obtain the suitability of each robot as well as an algorithm to determine the optimal instant of time to execute a task transfer. Several experiments demonstrate the usefulness of the VR, as well as indicates the next steps of the research.

Keywords: Cameras, Collision avoidance, Indexes, Joints, Robots, Surgery, Trajectory, Medical robotics, Surgery, Telerobotics, VR internal operation, Automatic cooperative behavior, Evaluation indexes, Master slave teleoperation architectures, Minimally invasive robotic surgery, Task transfer, Virtual robot


Amigo, L. E., Casals, A., Amat, J., (2011). Design of a 3-DoF joint system with dynamic servo-adaptation in orthotic applications Proceedings 2011 IEEE International Conference on Robotics and Automation (ICRA) , IEEE (Shanghai, China) , 3700-3705

Most exoskeleton designs rely on structures and mechanical joints that do not guarantee the right match between the orthosis and the user. This paper proposes a virtual joint model based on three active degrees of freedom aimed to emulate a human joint. This joint is capable of performing a dynamic servo-adaptation in real-time to avoid misalignments and to provide a flexible adjustment to different users' sizes in order to avoid undesirable interaction forces.

Keywords: Actuators, Elbow, Exoskeletons, Joints, Knee, Medical treatment