by Keyword: Link

By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Malandrino, Andrea, Trepat, Xavier, Kamm, Roger D., Mak, Michael, (2019). Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices PLoS Computational Biology PLOS Computational Biology , 15, (4), e1006684

The mechanical properties of the extracellular matrix (ECM)–a complex, 3D, fibrillar scaffold of cells in physiological environments–modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs–collagen I and fibrin–in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.

Keywords: Collagens, Fibrin, Extracellular matrix, Cross-linking, Cell physiology, Deformation, Fluorescence imaging, Cell biology

Sánchez-Ferrero, Aitor, Mata, Álvaro, Mateos-Timoneda, Miguel A., Rodríguez-Cabello, José C., Alonso, Matilde, Planell, Josep, Engel, Elisabeth, (2015). Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration Biomaterials 68, 42-53

Bone tissue engineering demands alternatives overcoming the limitations of traditional approaches in the context of a constantly aging global population. In the present study, elastin-like recombinamers hydrogels were produced by means of carbodiimide-catalyzed crosslinking with citric acid, a molecule suggested to be essential for bone nanostructure. By systematically studying the effect of the relative abundance of reactive species on gelation and hydrogel properties such as functional groups content, degradation and structure, we were able to understand and to control the crosslinking reaction to achieve hydrogels mimicking the fibrillary nature of the extracellular matrix. By studying the effect of polymer concentration on scaffold mechanical properties, we were able to produce hydrogels with a stiffness value of 36.13 ± 10.72 kPa, previously suggested to be osteoinductive. Microstructured and mechanically-tailored hydrogels supported the growth of human mesenchymal stem cells and led to higher osteopontin expression in comparison to their non-tailored counterparts. Additionally, tailored hydrogels were able to rapidly self-mineralize in biomimetic conditions, evidencing that citric acid was successfully used both as a crosslinker and a bioactive molecule providing polymers with calcium phosphate nucleation capacity.

Keywords: Biomimetic material, Biomineralisation, Bone tissue engineering, Cross-linking, Hydrogel, Mesenchymal stem cell

Vaca, R., Aranda, J., (2014). Approximating coupler curves using strip trees Advanced Numerical Methods II 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) , CIMNE (Barcelona, Spain) , 1-2

For the mechanisms considered under the title linkages, coupler curve is the path traced by one of the point on the coupler link considered as an output of the mechanism which is joined to a fixed link. The equation of the coupler curve generated can be obtained solving a set of equations which describes distance constancy between all points of a mechanism and this coupler curve is the eliminant of these equations. The proposal to this work is to approximate coupler curves using strip trees.

Keywords: Coupler curves, Strip tress, Distance geometry, Affine arithmetics, Planar linkages

McLenachan, S., Menchon, C., Raya, A., Consiglio, A., Edel, M. J., (2012). Cyclin A(1) is essential for setting the pluripotent state and reducing tumorigenicity of induced pluripotent stem cells Stem Cells and Development , 21, (15), 2891-2899

The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A1 protein expression of early- passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC- state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.

Keywords: Self-renewal, IPS cells, Ground-state, C-MYC, Generation, Pathway, Disease, Mice, Link, P53

Barthelmebs, L., Jonca, J., Hayat, A., Prieto-Simon, B., Marty, J. L., (2011). Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine Food Control , 22, (5), 737-743

Ochratoxin A (OTA) is one of the most important mycotoxins because of its high toxicity to both humans and animals and its occurrence in a number of basic foods and agro-products. The need to develop high-performing methods for OTA analysis able to improve the traditional ones is evident. In this work, through in vitro SELEX (Systematic Evolution of Ligands by EXponential enrichment) two aptamers, designated H8 and H12 were produced that bind with nanomolar affinity with Ochratoxin A (OTA). Two strategies were investigated by using an indirect and a direct competitive Enzyme-Linked Aptamer Assay (ELAA) and were compared to the classical competitive Enzyme-Linked Immunosorbent Assay (ELISA) for the determination of OTA in spiked red wine samples. The limit of detection attained (1 ng/mL), the midpoint value obtained (5 ng/mL) and the analysis time needed (125 min) for the real sample analysis validate the direct competitive ELAA as useful screening tool for routine use in the control of OTA level in wine.

Keywords: Competitive Enzyme-Linked Aptamer Assay (ELAA), DNA aptamer, Ochratoxin A, SELEX, Wine analysis

Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking