Publications

by Keyword: Measurement


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Lozano-García, M., Estrada, L., Jané, R., (2019). Performance evaluation of fixed sample entropy in myographic signals for inspiratory muscle activity estimation Entropy 21, (2), 183

Fixed sample entropy (fSampEn) has been successfully applied to myographic signals for inspiratory muscle activity estimation, attenuating interference from cardiac activity. However, several values have been suggested for fSampEn parameters depending on the application, and there is no consensus standard for optimum values. This study aimed to perform a thorough evaluation of the performance of the most relevant fSampEn parameters in myographic respiratory signals, and to propose, for the first time, a set of optimal general fSampEn parameters for a proper estimation of inspiratory muscle activity. Different combinations of fSampEn parameters were used to calculate fSampEn in both non-invasive and the gold standard invasive myographic respiratory signals. All signals were recorded in a heterogeneous population of healthy subjects and chronic obstructive pulmonary disease patients during loaded breathing, thus allowing the performance of fSampEn to be evaluated for a variety of inspiratory muscle activation levels. The performance of fSampEn was assessed by means of the cross-covariance of fSampEn time-series and both mouth and transdiaphragmatic pressures generated by inspiratory muscles. A set of optimal general fSampEn parameters was proposed, allowing fSampEn of different subjects to be compared and contributing to improving the assessment of inspiratory muscle activity in health and disease.

Keywords: Electromyography, Fixed sample entropy, Mechanomyography, Non-invasive physiological measurements, Oesophageal electromyography, Respiratory muscle


Parra-Cabrera, C., Samitier, J., Homs-Corbera, A., (2016). Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection Biosensors and Bioelectronics 77, 1192-1200

We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10. ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases.

Keywords: Adjustable sensing, Impedance measurements, In situ functionalization, Microfluidics, Prostate specific antigen, Self-assembled monolayers


Tahirbegi, I. B., Mir, M., Schostek, S., Schurr, M., Samitier, J., (2014). In vivo ischemia monitoring array for endoscopic surgery Biosensors and Bioelectronics 61, 124-130

An array with all-solid-state, potentiometric, miniaturized sensors for pH and potassium was developed to be introduced into the stomach or other sectors of the digestive tract by means of flexible endoscopy. These sensors perform continuous and simultaneous measurement of extracellular pH and potassium. This detection seeks to sense ischemia in the gastric mucosa inside the stomach, an event indicative of local microvascular perfusion and tissue oxygenation status. Our array is proposed as a medical tool to identify the occurrence of the ischemia after gastrointestinal or gastroesophageal anastomosis. The stability and feasibility of the miniaturized working and reference electrodes integrated in the array were studied under in vitro conditions, and the behavior of the potassium and pH ion-selective membranes were optimized to work under acidic gastric conditions with high concentrations of HCl. The array was tested in vivo in pigs to measure the ischemia produced by clamping the blood flow into the stomach. Our results indicate that ischemic and reperfusion states can be sensed in vivo and that information on tissue damage can be collected by this sensor array. The device described here provides a miniaturized, inexpensive, and mass producible sensor array for detecting local ischemia caused by unfavorable anastomotic perfusion and will thus contribute to preventing anastomotic leakage and failure caused by tissue necrosis.

Keywords: Endoscopy, Surgery, Tissue, Gastric anastomosis, Gastric conditions, Ion selective sensors, Ischemia, pH detection, Reference electrodes, Simultaneous measurement, Tissue oxygenation, Sensors


Jané, R., (2014). Engineering Sleep Disorders: From classical CPAP devices toward new intelligent adaptive ventilatory therapy IEEE Pulse , 5, (5), 29-32

Among the most common sleep disorders are those related to disruptions in airflow (apnea) or reductions in the breath amplitude (hypopnea) with or without obstruction of the upper airway (UA). One of the most important sleep disorders is obstructive sleep apnea (OSA). This sleep-disordered breathing, quantified by the apnea-hypopnea index (AHI), can produce a significant reduction of oxygen saturation and an abnormal elevation of carbon dioxide levels in the blood. Apnea and hypopnea episodes are associated with arousals and sleep fragmentation during the night and compensatory response of the autonomic nervous system.

Keywords: Biomedical engineering, Biomedical measurements, Biomedical monitoring, Breathing disorders, Medical conditions, Medical treatment, Sleep, Sleep apnea


Oller-Moreno, S., Pardo, A., Jimenez-Soto, J. M., Samitier, J., Marco, S., (2014). Adaptive Asymmetric Least Squares baseline estimation for analytical instruments SSD 2014 Proceedings 11th International Multi-Conference on Systems, Signals & Devices (SSD) , IEEE (Castelldefels-Barcelona, Spain) , 1569846703

Automated signal processing in analytical instrumentation is today required for the analysis of highly complex biomedical samples. Baseline estimation techniques are often used to correct long term instrument contamination or degradation. They are essential for accurate peak area integration. Some methods approach the baseline estimation iteratively, trying to ignore peaks which do not belong to the baseline. The proposed method in this work consists of a modification of the Asymmetric Least Squares (ALS) baseline removal technique developed by Eilers and Boelens. The ALS technique suffers from bias in the presence of intense peaks (in relation to the noise level). This is typical of diverse instrumental techniques such as Gas Chromatography-Mass Spectrometry (GC-MS) or Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). In this work, we propose a modification (named psalsa) to the asymmetry weights of the original ALS method in order to better reject large peaks above the baseline. Our method will be compared to several versions of the ALS algorithm using synthetic and real GC signals. Results show that our proposal improves previous versions being more robust to parameter variations and providing more accurate peak areas.

Keywords: Gas chromatography, Instruments, Radioactivity measurement, Signal processing, Analytical instrument, Analytical Instrumentation, Asymmetric least squares, Baseline estimation, Baseline removal, Gas chromatography-mass spectrometries (GC-MS), Instrumental techniques, Noise levels, Iterative methods


Estrada, L., Torres, A., Sarlabous, L., Fiz, J. A., Jané, R., (2014). Respiratory rate detection by empirical mode decomposition method applied to diaphragm mechanomyographic signals Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 3204-3207

Non-invasive evaluation of respiratory activity is an area of increasing research interest, resulting in the appearance of new monitoring techniques, ones of these being based on the analysis of the diaphragm mechanomyographic (MMGdi) signal. The MMGdi signal can be decomposed into two parts: (1) a high frequency activity corresponding to lateral vibration of respiratory muscles, and (2) a low frequency activity related to excursion of the thoracic cage. The purpose of this study was to apply the empirical mode decomposition (EMD) method to obtain the low frequency of MMGdi signal and selecting the intrinsic mode functions related to the respiratory movement. With this intention, MMGdi signals were acquired from a healthy subject, during an incremental load respiratory test, by means of two capacitive accelerometers located at left and right sides of rib cage. Subsequently, both signals were combined to obtain a new signal which contains the contribution of both sides of thoracic cage. Respiratory rate (RR) measured from the mechanical activity (RRMmg) was compared with that measured from inspiratory pressure signal (RRP). Results showed a Pearson's correlation coefficient (r = 0.87) and a good agreement (mean bias = -0.21 with lower and upper limits of -2.33 and 1.89 breaths per minute, respectively) between RRmmg and RRP measurements. In conclusion, this study suggests that RR can be estimated using EMD for extracting respiratory movement from low mechanical activity, during an inspiratory test protocol.

Keywords: Accelerometers, Band-pass filters, Biomedical measurement, Empirical mode decomposition, Estimation, IP networks, Muscles


Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798

Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.

Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis


Hernandez Bennetts, V. M., Lilienthal, A. J., Khaliq, A. A., Pomareda Sese, V., Trincavelli, M., (2013). Towards real-world gas distribution mapping and leak localization using a mobile robot with 3d and remote gas sensing capabilities 2013 IEEE International Conference on Robotics and Automation (ICRA) (ed. Parker, Lynne E.), IEEE (Karlsruhe, Germany) , 2335-2340

Due to its environmental, economical and safety implications, methane leak detection is a crucial task to address in the biogas production industry. In this paper, we introduce Gasbot, a robotic platform that aims to automatize methane emission monitoring in landfills and biogas production sites. The distinctive characteristic of the Gasbot platform is the use of a Tunable Laser Absorption Spectroscopy (TDLAS) sensor. This sensor provides integral concentration measurements over the path of the laser beam. Existing gas distribution mapping algorithms can only handle local measurements obtained from traditional in-situ chemical sensors. In this paper we also describe an algorithm to generate 3D methane concentration maps from integral concentration and depth measurements. The Gasbot platform has been tested in two different scenarios: an underground corridor, where a pipeline leak was simulated and in a decommissioned landfill site, where an artificial methane emission source was introduced.

Keywords: Laser beams, Measurement by laser beam, Mobile robots, Robot kinematics, Robot sensing systems


Caballero, D., Martinez, E., Bausells, J., Errachid, A., Samitier, J., (2012). Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface Analytica Chimica Acta 720, 43-48

In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3N 4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3N 4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2/Si 3N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 -13-10 -7M were detected, showing a sensitivity of 0.128ΩμM -1 and a limit of detection of 10 -14M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples.

Keywords: Aldehyde, Electrochemical impedance spectroscopy, Human serum albumin, Immunosensor, Silicon nitride, Bovine serum albumins, Chemical reagents, Complex samples, Covalent binding, Detection capability, Electrochemical impedance, Electrochemical impedance spectroscopy measurements, Functionalizations, Human serum albumins, Impedimetric immunosensors, Label free, Limit of detection, Linear range, Protein concentrations, Silicon-based, Specific detection, Aldehydes


Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242

The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.

Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides


Marco, S., Gutierrez-Galvez, A., (2012). Signal and data processing for machine olfaction and chemical sensing: A review IEEE Sensors Journal , 12, (11), 3189-3214

Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing.

Keywords: Chemical sensors, Electronic nose, Intelligent sensors, Measurement techniques, Sensor arrays, Sensor systems


Azevedo, S., Diéguez, L., Carvalho, P., Carneiro, J. O., Teixeira, V., Martínez, Elena, Samitier, J., (2012). Deposition of ITO thin films onto PMMA substrates for waveguide based biosensing devices Journal of Nano Research , 17, 75-83

Biosensors' research filed has clearly been changing towards the production of multifunctional and innovative design concepts to address the needs related with sensitivity and selectivity of the devices. More recently, waveguide biosensors, that do not require any label procedure to detect biomolecules adsorbed on its surface, have been pointed out as one of the most promising technologies for the production of biosensing devices with enhanced performance. Moreover the combination of optical and electrochemical measurements through the integration of transparent and conducting oxides in the multilayer structures can greatly enhance the biosensors' sensitivity. Furthermore, the integration of polymeric substrates may bring powerful advantages in comparison with silicon based ones. The biosensors will have a lower production costs being possible to disposable them after use ("one use sensor chip"). This research work represents a preliminary study about the influence of substrate temperature on the overall properties of ITO thin films deposited by DC magnetron sputtering onto 0,5 mm thick PMMA sheets.

Keywords: ITO thin films, PMMA sheets, Waveguide biosensing devices, Biosensing devices, Conducting oxides, Dc magnetron sputtering, Electrochemical measurements, Enhanced performance, Innovative design, ITO thin films, Multilayer structures, Overall properties, PMMA sheets, Polymeric substrate, Production cost, Sensor chips, Silicon-based, Substrate temperature, Biosensors, Deposition, Design, Film preparation, Optical multilayers, Thin films, Vapor deposition, Waveguides, Substrates


Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103

The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.

Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton


Llorens, Franc, Hummel, Manuela, Pastor, Xavier, Ferrer, Anna, Pluvinet, Raquel, Vivancos, Ana, Castillo, Ester, Iraola, Susana, Mosquera, Ana M., Gonzalez, Eva, Lozano, Juanjo, Ingham, Matthew, Dohm, Juliane C., Noguera, Marc, Kofler, Robert, Antonio del Rio, Jose, Bayes, Monica, Himmelbauer, Heinz, Sumoy, Lauro, (2011). Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis BMC Genomics , 12, 326

Background: Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer. Results: By applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions. Conclusions: We propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data.

Keywords: Gene-expression measurements, Quality-control maqc, Cancer-cell-lines, Real-time pcr, Oligonucleotide microarrays, Phosphorylation dynamics, In-vivo, Networks, Signal, Technologies


A. Mathur, P. Roca-Cusachs, O. M. Rossier, S. J. Wind, M. P. Sheetz, J. Hone, (2011). New approach for measuring protrusive forces in cells Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures , 29, (6), 06FA02

Gutierrez-Galvez, Agustin, Fernandez, Luis, Marco, Santiago, (2011). Study of sensory diversity and redundancy to encode for chemical mixtures Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 147-148

Inspired by sensory diversity and redundancy at the olfactory epithelium, we have built a large chemical sensor array based on commercial MOX sensors. Different sensor families along with temperature modulation accounts for sensory diversity, whereas sensors of the same family combined with different load resistors provide redundancy to the system. To study the encoding of odor mixtures, a data collection consisting on the response of the array to 3 binary mixtures of ethanol, acetone, and butanone with 18 different concentration ratios is obtained.

Keywords: Chemioception, Sensors, Data acquisition, Temperature measurement


Morgenstern, C., Schwaibold, M., Randerath, W., Bolz, A., Jané, R., (2010). Automatic non-invasive differentiation of obstructive and central hypopneas with nasal airflow compared to esophageal pressure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6142-6145

The differentiation of obstructive and central respiratory events is a major challenge in the diagnosis of sleep disordered breathing. Esophageal pressure (Pes) measurement is the gold-standard method to identify these events but its invasiveness deters its usage in clinical routine. Flattening patterns appear in the airflow signal during episodes of inspiratory flow limitation (IFL) and have been shown with invasive techniques to be useful to differentiate between central and obstructive hypopneas. In this study we present a new method for the automatic non-invasive differentiation of obstructive and central hypopneas solely with nasal airflow. An overall of 36 patients underwent full night polysomnography with systematic Pes recording and a total of 1069 hypopneas were manually scored by human experts to create a gold-standard annotation set. Features were automatically extracted from the nasal airflow signal to train and test our automatic classifier (Discriminant Analysis). Flattening patterns were non-invasively assessed in the airflow signal using spectral and time analysis. The automatic non-invasive classifier obtained a sensitivity of 0.71 and an accuracy of 0.69, similar to the results obtained with a manual non-invasive classification algorithm. Hence, flattening airflow patterns seem promising for the non-invasive differentiation of obstructive and central hypopneas.

Keywords: Practical, Experimental/ biomedical measurement, Feature extraction, Flow measurement, Medical disorders, Medical signal processing, Patient diagnosis, Pneumodynamics, Pressure measurement, Signal classification, Sleep, Spectral analysis/ automatic noninvasive differentiation, Obstructive hypopnea, Central hypopnea, Inspiratory flow limitation, Nasal airflow, Esophageal pressure, Polysomnography, Feature extraction, Discriminant analysis, Spectral analysis


Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291

Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.

Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring


Torres, A., Sarlabous, L., Fiz, j A., Gea, J., Marti nez-Llorens, J. M., Morera, J., Jané, R., (2010). Noninvasive measurement of inspiratory muscle performance by means of diaphragm muscle mechanomyographic signals in COPD patients during an incremental load respiratory test Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2493-2496

The study of mechanomyographic (MMG) signals of respiratory muscles is a promising noninvasive technique in order to evaluate the respiratory muscular effort and efficiency. In this work, the MMG signal of the diaphragm muscle it is evaluated in order to assess the respiratory muscular function in Chronic Obstructive Pulmonary Disease (COPD) patients. The MMG signals from left and right hemidiaphragm were acquired using two capacitive accelerometers placed on both left and right sides of the costal wall surface. The MMG signals and the inspiratory pressure signal were acquired while the COPD patients carried out an inspiratory load respiratory test. The population of study is composed of a group of 6 patients with severe COPD (FEV1>50% ref and DLCO<50% ref). We have found high positive correlation coefficients between the maximum inspiratory pressure (IPmax) developed in a respiratory cycle and different amplitude parameters of both left and right MMG signals (RMS, left: 0.68+/-0.11 - right: 0.69+/-0.12; Re nyi entropy, left: - 0.73+/-0.10 - right: 0.77+/-0.08; Multistate Lempel-Ziv, left: 0.73+/-0.17 - right: 0.74+/-0.08), and negative correlation between the Pmax and the maximum frequency of the MMG signal spectrum (left: -0.39+/-0.19 - right: -0.65+/-0.09). Furthermore, we found that the slope of the evolution of the MMG amplitude parameters, as the load increases during the respiratory test, has positive correlation with the %FEV1/FVC pulmonary function test parameter of the six COPD patients analyzed (RMS, left: 0.38 - right: 0.41; Re nyi entropy, left: 0.45 - right: 0.63; Multistate Lempel-Ziv, left: 0.39 - right: 0.64). These results suggest that the information provided by MMG signals could be used in order to evaluate the respiratory effort and the muscular efficiency in COPD patients.

Keywords: Accelerometers, Biomechanics, Biomedical measurement, Diseases, Medical signal processing, Muscle


Mesquita, J., Fiz, J. A., Solà, J., Morera, J., Jané, R., (2010). Regular and non regular snore features as markers of SAHS Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6138-6141

Sleep Apnea-Hypopnea Syndrome (SAHS) diagnosis is still done with an overnight multi-channel polysomnography. Several efforts are being made to study profoundly the snore mechanism and discover how it can provide an opportunity to diagnose the disease. This work introduces the concept of regular snores, defined as the ones produced in consecutive respiratory cycles, since they are produced in a regular way, without interruptions. We applied 2 thresholds (TH/sub adaptive/ and TH/sub median/) to the time interval between successive snores of 34 subjects in order to select regular snores from the whole all-night snore sequence. Afterwards, we studied the effectiveness that parameters, such as time interval between successive snores and the mean intensity of snores, have on distinguishing between different levels of SAHS severity (AHI (Apnea-Hypopnea Index)<5h/sup -1/, AHI<10 h/sup -1/, AHI<15h/sup -1/, AHI<30h/sup -1/). Results showed that TH/sub adaptive/ outperformed TH/sub median/ on selecting regular snores. Moreover, the outcome achieved with non-regular snores intensity features suggests that these carry key information on SAHS severity.

Keywords: Practical, Experimental/ acoustic signal processing, Bioacoustics, Biomedical measurement, Diseases, Feature extraction, Medical signal processing, Patient diagnosis, Pneumodynamics, Sleep/ nonregular snore features, SAHS markers, Sleep apnea hypopnea syndrome, Overnight multichannel polysomnography, Snore mechanism


Arcentales, A., Giraldo, B. F., Caminal, P., Diaz, I., Benito, S., (2010). Spectral analysis of the RR series and the respiratory flow signal on patients in weaning process Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2485-2488

A considerable number of patients in weaning process have problems to keep spontaneous breathing during the trial and after it. This study proposes to extract characteristic parameters of the RR series and respiratory flow signal according to the patients' condition in weaning test. Three groups of patients have been considered: 93 patients with successful trials (group S), 40 patients that failed to maintain spontaneous breathing (group F), and 21 patients who had successful weaning trials, but that had to be reintubated before 48 hours (group R). The characterization was performed using spectral analysis of the signals, through the power spectral density, cross power spectral density and Coherence method. The parameters were extracted on the three frequency bands (VLF, LF and HF), and the principal statistical differences between groups were obtained in bands of VLF and HF. The results show an accuracy of 76.9% in the classification of the groups S and F.

Keywords: Biomedical measurement, Electrocardiography, Medical signal processing, Pneumodynamics, Spectral analysis, RR series, Coherence method, Cross power spectral density, Electrocardiography, Principal statistical differences, Respiratory flow signal, Spectral analysis, Spontaneous breathing, Weaning test


Nussio, M. R., Oncins, G., Ridelis, I., Szili, E., Shapter, J. G., Sanz, F., Voelcker, N. H., (2009). Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: A force spectroscopy study Journal of Physical Chemistry B , 113, (30), 10339-10347

In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-Dimyzistoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

Keywords: Black lipid-membranes, Gold surfaces, Supported bilayers, Channel activity, Micro-BLMS, Silicon, Proteins, Vesicles, AFM, Temperature measurement


Colomer-Farrarons, J., Miribel-Catala, P. L., Samitier, J., Arundell, M., Rodriguez, I., (2009). Design of a miniaturized electrochemical instrument for in-situ O/sub 2/ monitoring Sensors and Signal Conditioning VLSI Circuits and Systems IV , SPIE (Desdren, Germany) 7363, 73630A

The authors are working toward the design of a device for the detection of oxygen, following a discrete and an integrated instrumentation implementation. The discrete electronics are also used for preliminary analysis, to confirm the validity of the conception of system, and its set-up would be used in the characterization of the integrated device, waiting for the chip fabrication. This paper presents the design of a small and portable potentiostat integrated with electrodes, which is cheap and miniaturized, which can be applied for on-site measurements for the simultaneous detection of O/sub 2/ and temperature in water systems. As a first approach a discrete PCB has been designed based on commercial discrete electronics and specific oxygen sensors. Dissolved oxygen concentration (DO) is an important index of water quality and the ability to measure the oxygen concentration and temperature at different positions and depths would be an important attribute to environmental analysis. Especially, the objective is that the sensor and the electronics can be integrated in a single encapsulated device able to be submerged in environmental water systems and be able to make multiple measurements. For our proposed application a small and portable device is developed, where electronics and sensors are miniaturized and placed in close proximity to each other. This system would be based on the sensors and electronics, forming one module, and connected to a portable notebook to save and analyze the measurements on-line. The key electronics is defined by the potentiostat amplifier, used to fix the voltage between the working (WE) and reference (RE) electrodes following an input voltage (Vin). Vin is a triangular signal, programmed by a LabView/sup c / interface, which is also used to represent the CV transfers. To obtain a smaller and compact solution the potentiostat amplifier has also been integrated defining a full custom ASIC amplifier, which is in progress, looking for a point-of-care device. These circuits have been designed with a 0.13 mu m technology from ST Microelectronics through the CMP-TIMA service.

Keywords: Amplifiers, Application specific integrated circuits, Chemical sensors, Electrodes, Portable instruments, Temperature measurement, Water sources


Barhoumi, H., Haddad, R., Maaref, A., Bausells, J., Bessueille, F., Leonard, D., Jaffrezic-Renault, N., Martelet, C., Zine, N., Errachid, A., (2008). Na+-implanted membrane for a capacitive sodium electrolyte-Insulator-Semiconductor microsensors Sensor Letters International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Microelectronics and Microsystems (ed. -----), Amer Scientific Publishers (Lombardy, Italy) 6, (1), 204-208

Ion implanted Insulator-Semiconductor (IS) sensor that specifically detects Na+ ions have been developed using ion implantation technique. Na+ ions were directly implanted with ion energies 30, 45, and 60 keV into the IS (oxidized Si3N4/Si3N4/SiO2/P-Si) structures previously covered with a thin aluminum layer. X-ray photoelectron spectroscopy (XPS) characterization shows that sodium and aluminum ions were implanted into the oxidized Si3N4 insulating layer surface. Their atomic percentage depending on energy, fluence of the implanted ion and of the annealing temperature. The sen sitivity of the ion-implanted IS structure for Na+ and of some interfering (K+, Li+, H+, and NH4+) ions was investigated using high frequency capacitance-voltage measurements. Under optimal i mplantation conditions such as energy, fluence and annealing temperature, the developed sodium microsensor demonstrates quasi-nernstian sensitivity (50 +/- 2 mV/pNa) in the concentration range from 10(-3.7) to 10(-1) M and high lifetime greater than 16 months without any loss of sensitivity.

Keywords: Na+ microsensor, Ion implantation, XPS, C-V measurements