Publications

by Keyword: Odor


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Pomareda, V., Magrans, R., Jiménez-Soto, J., Martínez, D., Tresánchez, M., Burgués, J., Palacín, J., Marco, S., (2017). Chemical source localization fusing concentration information in the presence of chemical background noise Sensors 17, (4), 904

We present the estimation of a likelihood map for the location of the source of a chemical plume dispersed under atmospheric turbulence under uniform wind conditions. The main contribution of this work is to extend previous proposals based on Bayesian inference with binary detections to the use of concentration information while at the same time being robust against the presence of background chemical noise. For that, the algorithm builds a background model with robust statistics measurements to assess the posterior probability that a given chemical concentration reading comes from the background or from a source emitting at a distance with a specific release rate. In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations and ten real data experiments are used for evaluation purposes. For the simulations, we have supposed that sensors are mounted on cars which do not have among its main tasks navigating toward the source. To collect the real dataset, a special arena with induced wind is built, and an autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better estimation of the source location even for a low background level that benefits the performance of binary version. The improvement is clear for the synthetic data while for real data the estimation is only slightly better, probably because our exploration arena is not able to provide uniform wind conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presented.

Keywords: Machine olfaction, Odor robots, Chemical sensors, Bayesian inference


Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T., Vershure, P., Persaud, K., (2013). Biologically inspired large scale chemical sensor arrays and embedded data processing Proceedings of SPIE - The International Society for Optical Engineering Smart Sensors, Actuators, and MEMS VI , SPIE Digital Library (Grenoble, France) 8763, 1-15

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: The olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes.

Keywords: Antennal lobes, Artificial olfaction, Computational neuroscience, Olfactory bulbs, Plume tracking, Abstracting, Actuators, Algorithms, Biomimetic processes, Chemical sensors, Conducting polymers, Data processing, Flavors, Odors, Robots, Smart sensors, Embedded systems


Auffarth, Benjamin, Gutierrez-Galvez, Agustín, Marco, Santiago, (2011). Continuous spatial representations in the olfactory bulb may reflect perceptual categories Frontiers in Systems Neuroscience 5, (82), 1-8

In sensory processing of odors, the olfactory bulb is an important relay station, where odor representations are noise-filtered, sharpened, and possibly re-organized. An organization by perceptual qualities has been found previously in the piriform cortex, however several recent studies indicate that the olfactory bulb code reflects behaviorally relevant dimensions spatially as well as at the population level. We apply a statistical analysis on 2-deoxyglucose images, taken over the entire bulb of glomerular layer of the rat, in order to see how the recognition of odors in the nose is translated into a map of odor quality in the brain. We first confirm previous studies that the first principal component could be related to pleasantness, however the next higher principal components are not directly clear. We then find mostly continuous spatial representations for perceptual categories. We compare the space spanned by spatial and population codes to human reports of perceptual similarity between odors and our results suggest that perceptual categories could be already embedded in glomerular activations and that spatial representations give a better match than population codes. This suggests that human and rat perceptual dimensions of odorant coding are related and indicates that perceptual qualities could be represented as continuous spatial codes of the olfactory bulb glomerulus population.

Keywords: Glomeruli, Memory organization, Odor quality, Olfaction, Olfactory bulb, Perceptual categories, Population coding, Spatial coding


Auffarth, Benjamin, Gutierrez, Agustin, Marco, Santiago, (2011). Statistical analysis of coding for molecular properties in the olfactory bulb Frontiers in Systems Neuroscience 5, (62), 1-8

The relationship between molecular properties of odorants and neural activities is arguably one of the most important issues in olfaction and the rules governing this relationship are still not clear. In the olfactory bulb (OB), glomeruli relay olfactory information to second-order neurons which in turn project to cortical areas. We investigate relevance of odorant properties, spatial localization of glomerular coding sites, and size of coding zones in a dataset of 2-deoxyglucose images of glomeruli over the entire OB of the rat. We relate molecular properties to activation of glomeruli in the OB using a nonparametric statistical test and a support-vector machine classification study. Our method permits to systematically map the topographic representation of various classes of odorants in the OB. Our results suggest many localized coding sites for particular molecular properties and some molecular properties that could form the basis for a spatial map of olfactory information. We found that alkynes, alkanes, alkenes, and amines affect activation maps very strongly as compared to other properties and that amines, sulfur-containing compounds, and alkynes have small zones and high relevance to activation changes, while aromatics, alkanes, and carboxylics acid recruit very big zones in the dataset. Results suggest a local spatial encoding for molecular properties.

Keywords: Molecular-receptive range, Odor, Olfactory bulb, Olfactory coding, Property-activity relationship, Structure-odor relationship


Auffarth, B., Gutierrez-Galvez, A., Marco, S., (2010). Relevance and LOCI of odorant features in the rat olfactory bulb: Statistical methods for understanding olfactory codes in glomerular images BIOSIGNALS 2010 - Proceedings of the 3rd International Conference on Bio-inpsired Systems and Signal Processing, Proceedings 3rd International Conference on Bio-inspired Systems and Signal Processing, BIOSIGNALS 2010 (ed. Fred, A., Filipe, J., Gamboa, H.), Springer-Verlag (Valencia, Spain) , 37-44

The relationship between physicochemical properties of odor molecules and perceived odor quality is arguably one of the most important issues in olfaction and the rules governing this relationship remain unknown. Any given odor molecule will stimulate more than one type of receptor in the nose, perhaps hundreds, and this stimulation reflects itself in the neural code of the olfactory nervous system. We present a method to investigate neural coding at the glomerular level of the olfactory bulb, the first relay for olfactory processing in the brain. Our results give insights into localization of coding sites, relevance of odorant properties for information processing, and the size of coding zones.

Keywords: Classification, Glomeruli, Non-parametric statistics, Odorants, Olfactory bulb, Olfactory coding, Property-activity relationship


Casuso, I., Pla, M., Gomila, G., Samitier, J., Minic, J., Persuy, M. A., Salesse, R., Pajot-Augy, E., (2008). Immobilization of olfactory receptors onto gold electrodes for electrical biosensor Materials Science & Engineering C 5th Maghreb-Europe Meeting on Materials and their Applicatons for Devices and Physical, Chemical and Biological Sensors , Elsevier Science (Mahdia, TUNISIA) 28, (5-6), 686-691

We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 run to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

Keywords: AFM, Adsorption, Odorant, Taste