Publications

by Keyword: Optical microscopy


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Climent, A. M., Hernandez-Romero, I., Guillem, M. S., Montserrat, N., Fernandez, M. E., Atienza, F., Fernandez-Aviles, F., (2017). High resolution microscopic optical mapping of anatomical and functional reentries in human cardiac cell cultures IEEE Conference Publications Computing in Cardiology Conference (CinC), 2016 , IEEE (Vancouver, Canada) 43, 233-236

Anatomical and/or functional reentries have been proposed as one of the main mechanism of perpetuation of cardiac fibrillation processes. However, technical limitations have difficult the characterization of those reentries and are hampering the development of effective anti-arrhythmic treatments. The goal of this study is to present a novel technology to map with high resolution the center of fibrillation drivers in order to characterize the mechanisms of reentry. Cell cultures of human cardiac-like cells differentiated from pluripotent stem cells were analyzed with a novel microscopic optical mapping system. The pharmacological response to verapamil administration of each type of reentry was analyzed. In all analyzed cell cultures, a reentry was identified as the mechanism of maintenance of the arrhythmia. Interestingly, the administration of verapamil produced opposite effects on activation rate depending on the mechanisms of reentry (i.e. anatomical or functional). Microscopic optical mapping of reentries allows the identification of perpetuation mechanisms which has been demonstrated to be linked with different pharmacological response.

Keywords: Stem cells, Rotors, Microscopy, Optical filters, Calcium, Optical microscopy, Biomedical optical imaging


Dols-Perez, A., Sisquella, X., Fumagalli, L., Gomila, G., (2013). Optical visualization of ultrathin mica flakes on semitransparent gold substrates Nanoscale Research Letters 8, (1), 1-5

We show that optical visualization of ultrathin mica flakes on metallic substrates is viable using semitransparent gold as substrates. This enables to easily localize mica flakes and rapidly estimate their thickness directly on gold substrates by conventional optical reflection microscopy. We experimentally demonstrate it by comparing optical images with atomic force microscopy images of mica flakes on semitransparent gold. Present results open the possibility for simple and rapid characterization of thin mica flakes as well as other thin sheets directly on metallic substrates.

Keywords: Atomic force, Conductive AFM, Gold substrates, Metallic substrate, Optical image, Optical reflection, Optical visualization, Ultrathin layers, Atomic force microscopy, Geometrical optics, Gold, Mica, Optical microscopy, Substrates


Garcia-Parajo, M. F., (2012). The role of nanophotonics in regenerative medicine Nanotechnology in Regenerative Medicine - Methods and Protocols (Methods in Molecular Biology) (ed. Navarro, M., Planell, J. A.), Springer (New York, USA) 811, 267-284

Cells respond to biochemical and mechanical stimuli through a series of steps that begin at the molecular, nanometre level, and translate finally in global cell response. Defects in biochemical- and/or mechanical-sensing, transduction or cellular response are the cause of multiple diseases, including cancer and immune disorders among others. Within the booming field of regenerative medicine, there is an increasing need for developing and applying nanotechnology tools to bring understanding on the cellular machinery and molecular interactions at the nanoscale. Nanotechnology, nanophotonics and in particular, high-resolution-based fluorescence approaches are already delivering crucial information on the way that cells respond to their environment and how they organize their receptors to perform specialized functions. This chapter focuses on emerging super-resolution optical techniques, summarizing their principles, technical implementation, and reviewing some of the achievements reached so far.

Keywords: Cell membrane organization, Nanophotonics, Near-field optical microscopy, Super-resolution optical microscopy


van Zanten, T. S., Garcia-Parajo, M. F., (2012). Super-resolution near-field optical microscopy Comprehensive Biophysics (ed. Egelman, E. H.), Elsevier (Desdren, Germany) Volume 2: Biophysical Techniques for Characterization of Cells, 144-164

Near-field optical microscopy is a technique not limited by the laws of diffraction that enables simultaneous high-resolution fluorescence and topographic measurements at the nanometer scale. This chapter highlights the intrinsic advantages of near-field optics in the study of cellular structures. The first part of the chapter lays the foundations of the near-field concept and technical implementation of near-field scanning optical microscopy (NSOM), whereas the second part of the chapter focuses on applications of NSOM to the study of model membranes and cellular structures on the plasma membrane. The last part of the chapter discusses further directions of near-field optics, including optical antennas and fluorescence correlation spectroscopy approaches in the near-field regime.

Keywords: Biological membranes, Cell membrane nanoscale compartmentalization, Cellular nanodomains, Fluorescence correlation spectroscopy in reduced volumes, Immunoreceptor imaging, Lipid rafts, Near-field scanning optical microscopy, Optical nano-antennas, Shear force imaging, Single molecule detection, Super-resolution microscopy


van Zanten, T. S., Gomez, J., Manzo, C., Cambi, A., Buceta, J., Reigada, R., Garcia-Parajo, M. F., (2010). Direct mapping of nanoscale compositional connectivity on intact cell membranes Proceedings of the National Academy of Sciences of the United States of America 107, (35), 15437-15442

Lateral segregation of cell membranes is accepted as a primary mechanism for cells to regulate a diversity of cellular functions. In this context, lipid rafts have been conceptualized as organizing principle of biological membranes where underlying cholesterol-mediated selective connectivity must exist even at the resting state. However, such a level of nanoscale compositional connectivity has been challenging to prove. Here we used single-molecule near-field scanning optical microscopy to visualize the nanolandscape of raft ganglioside GM1 after tightening by its ligand cholera toxin (CTxB) on intact cell membranes. We show that CTxB tightening of GM1 is sufficient to initiate a minimal raft coalescence unit, resulting in the formation of cholesterol-dependent GM1 nanodomains <120 nm in size. This particular arrangement appeared independent of cell type and GM1 expression level on the membrane. Simultaneous dual color high-resolution images revealed that GPI anchored and certain transmembrane proteins were recruited to regions proximal (<150 nm) to CTxB-GM1 nanodomains without physical intermixing. Together with in silico experiments, our high-resolution data conclusively demonstrate the existence of raft-based interconnectivity at the nanoscale. Such a linked state on resting cell membranes constitutes thus an obligatory step toward the hierarchical evolution of large-scale raft coalescence upon cell activation.

Keywords: Cholera toxin, Membrane heterogeneity, Near-field scanning optical microscopy, Raft ganglioside GM1, Single-molecule detection


van Zanten, T. S., Cambi, A., Garcia-Parajo, M. F., (2010). A nanometer scale optical view on the compartmentalization of cell membranes Biochimica et Biophysica Acta - Biomembranes , 1798, (4), 777-787

For many years, it was believed that the laws of diffraction set a fundamental limit to the spatial resolution of conventional light microscopy. Major developments, especially in the past few years, have demonstrated that the diffraction barrier can be overcome both in the near- and far-field regime. Together with dynamic measurements, a wealth of new information is now emerging regarding the compartmentalization of cell membranes. In this review we focus on optical methods designed to explore the nanoscale architecture of the cell membrane, with a focal point on near-field optical microscopy (NSOM) as the first developed technique to provide truly optical super-resolution beyond the diffraction limit of light. Several examples illustrate the unique capabilities offered by NSOM and highlight its usefulness on cell membrane studies, complementing the palette of biophysical techniques available nowadays.

Keywords: Membrane nanodomain, Lipid raft, Single molecule detection, Near-field scanning optical microscopy, Super-resolution optical microscopy


van Zanten, T. S., Cambi, A., Koopman, M., Joosten, B., Figdor, Carl G., Garcia-Parajo, M. F., (2009). Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion Proceedings of the National Academy of Sciences of the United States of America 106, (44), 18557-18562

Recruitment of receptor proteins to lipid rafts has been proposed as an important mechanism to regulate their cellular function. In particular, rafts have been implicated in regulation of integrin-mediated cell adhesion, although the underlying mechanism remains elusive. We used single-molecule near-field optical microscopy (NSOM) with localization accuracy of approximately 3 nm, to capture the spatio-functional relationship between the integrin LFA-1 and raft components (GPI-APs) on immune cells. Dual color nanoscale imaging revealed the existence of a nanodomain GPI-AP subpopulation that further concentrated in regions smaller than 250 nm, suggesting a hierarchical prearrangement of GPI-APs on resting monocytes. We previously demonstrated that in quiescent monocytes, LFA-1 preorganizes in nanoclusters. We now show that integrin nanoclusters are spatially different but reside proximal to GPI-AP nanodomains, forming hotspots on the cell surface. Ligand-mediated integrin activation resulted in an interconversion from monomers to nanodomains of GPI-APs and the generation of nascent adhesion sites where integrin and GPI-APs colocalized at the nanoscale. Cholesterol depletion significantly affected the reciprocal distribution pattern of LFA-1 and GPI-APs in the resting state, and LFA-1 adhesion to its ligand. As such, our data demonstrate the existence of nanoplatforms as essential intermediates in nascent cell adhesion. Since raft association with a variety of membrane proteins other than LFA-1 has been documented, we propose that hotspots regions enriched with raft components and functional receptors may constitute a prototype of nanoscale inter-receptor assembly and correspond to a generic mechanism to offer cells with privileged areas for rapid cellular function and responses to the outside world.

Keywords: Integrin LFA-1, Membrane nanocompartments, Near-field scanning optical microscopy (NSOM), Single molecule detection


de Bakker, Barbel I., Bodnar, Andrea, van Dijk, Erik M. H. P., Vamosi, Gyorgy, Damjanovich, Sandor, Waldmann, Thomas A., van Hulst, Niek F., Jenei, Attila, Garcia-Parajo, M. F., (2008). Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells Journal of Cell Science 121, (5), 627-633

Interleukin 2 and interleukin 15 (IL2 and IL15, respectively) provide quite distinct contributions to T-cell-mediated immunity, despite having similar receptor composition and signaling machinery. As most of the proposed mechanisms underlying this apparent paradox attribute key significance to the individual {alpha}-chains of IL2 and IL15 receptors, we investigated the spatial organization of the receptors IL2R{alpha} and IL15R{alpha} at the nanometer scale expressed on a human CD4+ leukemia T cell line using single-molecule-sensitive near-field scanning optical microscopy (NSOM). In agreement with previous findings, we here confirm clustering of IL2R{alpha} and IL15R{alpha} at the submicron scale. In addition to clustering, our single-molecule data reveal that a non-negligible percentage of the receptors are organized as monomers. Only a minor fraction of IL2R{alpha} molecules reside outside the clustered domains, whereas [~]30% of IL15R{alpha} molecules organize as monomers or small clusters, excluded from the main domain regions. Interestingly, we also found that the packing densities per unit area of both IL2R{alpha} and IL15R{alpha} domains remained constant, suggesting a `building block' type of assembly involving repeated structures and composition. Finally, dual-color NSOM demonstrated co-clustering of the two {alpha}-chains. Our results should aid understanding the action of the IL2R-IL15R system in T cell function and also might contribute to the more rationale design of IL2R- or IL15R-targeted immunotherapy agents for treating human leukemia.

Keywords: Near-field scanning optical microscopy (NSOM), Interleukin receptors IL2R, IL15R, Single-molecule detection, Nanometer-scale membrane organization


De Bakker, B. I., De Lange, F., Cambi, A., Korterik, J. P., Van Dijk, E. M. H. P., Van Hulst, N. F., Figdor, C. G., Garcia-Parajo, M. F., (2007). Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy ChemPhysChem , 8, (10), 1473-1480

DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have investigated the nanoscale organization of fluorescently labeled DC-SIGN on intact isolated DCs by means of near-field scanning optical microscopy (NSOM) combined with single-molecule detection. Fluorescence spots of different intensity and size have been directly visualized by optical means with a spatial resolution of less than 100 nm. Intensity- and size-distribution histograms of the DC-SIGN fluorescent spots confirm that approximately 80% of the receptors are organized in nanosized domains randomly distributed on the cell membrane. Intensity-size correlation analysis revealed remarkable heterogeneity in the molecular packing density of the domains. Furthermore, we have mapped the intermolecular organization within a dense cluster by means of sequential NSOM imaging combined with discrete single-molecule photobleaching. In this way we have determined the spatial coordinates of 13 different individual dyes, with a localization accuracy of 6 nm. Our experimental observations are all consistent with an arrangement of DC-SIGN designed to maximize its chances of binding to a wide range of microorganisms. Our data also illustrate the potential of NSOM as an ultrasensitive, high-resolution technique to probe nanometer-scale organization of molecules on the cell membrane.

Keywords: High-resolution optical microscopy, Lectins, Membranes, Receptors, Single-molecule studies