Publications

by Keyword: Polystyrene


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Comelles, J., Estevez, M., Martinez, E., Samitier, J., (2010). The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion Nanomedicine: Nanotechnology Biology and Medicine , 6, (1), 44-51

Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. However, novel applications in the biosensor field require materials to be compatible with cell growth and at the same time be suitable for technological processing. Technological polymers are key materials in the fabrication of disposable parts and other sensing elements. As such, it is essential to characterize the surface properties of technological polymers, especially after processing and sterilization. It is also important to understand how technological polymers affect cell behavior when in contact with polymer materials. Therefore, the aim of this research was to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly (methyl methacrylate), polystyrene, and poly(dimethylsiloxane). Glass was used as the control material. From the Clinical Editor: Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. The aim of this research is to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly(methylmethacrylate) (PMMA), polystyrene (PS), and poly(dimethylsiloxane) (PDMS).

Keywords: Thin-films, Poly(methyl methacrylate), Osteoblast adhesion, Electron-microscopy, Fibronectin, Polystyrene, Oly(dimethylsiloxane), Biocompatibility, Hydroxyapatite, Behavior


Ruiz, A., Mills, C. A., Valsesia, A., Martinez, E., Ceccone, G., Samitier, J., Colpo, P., Rossi, F., (2009). Large-area, nanoimprint-assisted microcontact stripping for the fabrication of microarrays of fouling/nonfouling nanostructures Small 5, (10), 1133-1137

Methods for the accurate positioning of nanometric beads on a substrate have been developed over a number of years, and range from serial atomic force microscopy (AFM)techniques for single-bead positioning to parallel techniques for the positioning of large populations of beads in monolayer or multilayer architectures, typically from a liquid suspension. For example, topographic cues have been used for bead-based protein array production, although in this case, there is a random distribution of beads within the topography. Bead patterning has also been achieved in capillaries using a micromolding in capillaries (MIMIC) technique. Line patterns with micrometer widths are possible with this technique, achieving good multilayer organization. For monolayer bead patterning at micrometer dimensions, electrostatic forces and similar electrostatic assemblies using nanoxerography, as well as patterning by selective chemical functionalization, by transfer of particles from a liquid–liquid interface, and by subtracting top–down processes, are possible.

Keywords: Microcontact stripping, Nanostructures, Poly(acrylic acid), Polystyrene, Surface patterning


Morales, R., Riss, M., Wang, L., Gavin, R., Del Rio, J. A., Alcubilla, R., Claverol-Tinture, E., (2008). Integrating multi-unit electrophysiology and plastic culture dishes for network neuroscience Lab on a Chip 8, (11), 1896-1905

The electrophysiological characterisation of cultured neurons is of paramount importance for drug discovery, safety pharmacology and basic research in the neurosciences. Technologies offering low cost, low technical complexity and potential for scalability towards high-throughput electrophysiology on in vitro neurons would be advantageous, in particular for screening purposes. Here we describe a plastic culture substrate supporting low-complexity multi-unit loose-patch recording and stimulation of developing networks while retaining manufacturability compatible with low-cost and large-scale production. Our hybrid polydimethylsilane (PDMS)-on-polystyrene structures include chambers (6 mm in diameter) and microchannels (25 mu m x 3.7 mu m 1 mm) serving as substrate-embedded recording pipettes. Somas are plated and retained in the chambers due to geometrical constraints and their processes grow along the microchannels, effectively establishing a loose-patch configuration without human intervention. We demonstrate that off-the-shelf voltage-clamp, current-clamp and extracellular amplifiers can be used to record and stimulate multi-unit activity with the aid of our dishes. Spikes up to 50 pA in voltage-clamp and 300 mu V in current-clamp modes are recorded in sparse and bursting activity patterns characteristic of 1 week-old hippocampal cultures. Moreover, spike sorting employing principal component analysis (PCA) confirms that single microchannels support the recording of multiple neurons. Overall, this work suggests a strategy to endow conventional culture plasticware with added functionality to enable cost-efficient network electrophysiology.

Keywords: Electrophysiological characterisation, Cultured neurons, Polydimethylsilane (PDMS)-on-polystyrene structures