by Keyword: Semiconductor

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Palacín, J., Martínez, D., Clotet, E., Pallejà, T., Burgués, J., Fonollosa, J., Pardo, A., Marco, Santiago, (2019). Application of an array of metal-oxide semiconductor gas sensors in an assistant personal robot for early gas leak detection Sensors 19, (9), 1957

This paper proposes the application of a low-cost gas sensor array in an assistant personal robot (APR) in order to extend the capabilities of the mobile robot as an early gas leak detector for safety purposes. The gas sensor array is composed of 16 low-cost metal-oxide (MOX) gas sensors, which are continuously in operation. The mobile robot was modified to keep the gas sensor array always switched on, even in the case of battery recharge. The gas sensor array provides 16 individual gas measurements and one output that is a cumulative summary of all measurements, used as an overall indicator of a gas concentration change. The results of preliminary experiments were used to train a partial least squares discriminant analysis (PLS-DA) classifier with air, ethanol, and acetone as output classes. Then, the mobile robot gas leak detection capabilities were experimentally evaluated in a public facility, by forcing the evaporation of (1) ethanol, (2) acetone, and (3) ethanol and acetone at different locations. The positive results obtained in different operation conditions over the course of one month confirmed the early detection capabilities of the proposed mobile system. For example, the APR was able to detect a gas leak produced inside a closed room from the external corridor due to small leakages under the door induced by the forced ventilation system of the building.

Keywords: Metal-oxide semiconductor, Gas sensor, Gas leak detection, Assistant personal robot, Mobile robot

Burgués, J., Jiménez-Soto, J. M., Marco, S., (2018). Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models Analytica Chimica Acta 1013, 13-25

The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity.

Keywords: Semiconductor gas sensors, Metal-oxide sensors, Limit of detection, Non-linear, Humidity interference, Temperature modulation

Burgués, J., Marco, S., (2018). Low power operation of temperature-modulated metal oxide semiconductor gas sensors Sensors 18, (2), 339

Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0–9 ppm) with environmental conditions, such as ambient humidity (15–75% relative humidity) and temperature (21–27 ◦C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher prediction errors.

Keywords: Smartphone, Metal-oxide semiconductor, Gas sensor, Low power, Temperature-modulation, Interferences

Tahirbegi, I. B., Mir, M., (2011). Slit-wave model for band structures in solid state physics Modern Physics Letters B , 25, (3), 151-161

The reason behind the entire development in silicon technology was band models in solid state physics. However, the theories postulated in order to give response to this phenomenon do not explain all kinds of materials. In a bid to overcome this limitation, we approach the problem from another point of view. In this work, the wave properties of the electrons from the external orbitals of the atoms and its diffraction patterns through the lattice structure of the material have been used to explain the band structure of metals, semiconductor and insulators. In order to probe this hypothesis, a simulation has been used and according to the relation between the lattice constant and the atomic diameter, the splitting of the bands have been observed for different kind of materials, showing a strong correlation between the simulation and the experimental results.

Keywords: Electrical band structure, Band gap, Fraunhofer diffraction, Semiconductor, Insulator

Zazoua, A., Kherrat, R., Caballero, D., Errachid, A., Jaffrezic-Renault, N., Bessueille, F., Leonard, D., (2009). Characterisation of a Cr(VI) sensitive polysiloxane membrane by x-ray photoelectron spectrometry and atomic force microscopy Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 995-1000

Cr(VI) sensitive polysiloxane membranes containing tributylphosphate (TBP) or trioctylphosphine oxide (TOPO) were characterized in this study. TBP and TOPO as carriers, have a high selectivity for Cr(VI). The Potentiometric response of EMIS (Electrolyte/Membrane/Insulator/Semiconductor) sensors presents a quasi-nernstian response for Cr2O2-7 exchange. The ion exchange is shown by X-ray photoelectron spectrometry (XPS), the binding energy of the Cr 2p1/2 peak corresponding to Cr(VI) and the atomic composition after exposure to Cr(VI) shows a factor 1.7 higher for silopreneTBP membrane. The conformational topography of both polymeric membranes was characterized by Atomic Force Microscopy (AFM), the exchange of Cr(VI) leading to a heterogeneous topographic state. Adhesion force measurements are also performed to study the properties of adhesion of both selective membranes with a non-functionalized Si AFM tip and with an OTS functionalized one to study the interactions between the tip and the membrane, in liquid before and after the exposure of the membrane to ion chromium. The presence of the ionophores does not practically change the adhesion force compared to pure polysiloxane, showing a good solubility of the ionophore and the orientation of the alkyl chains towards the polysiloxane surface. After the exchange with Cr(VI), the adhesion force decreases drastically due to the hydrophilic character of the surface, complex of Cr(VI) with the P-O groups of both ionophore being oriented towards the surface.

Keywords: AFM, Electrolyte/membrane/insulator/semiconductor structures, Polysiloxane membrane, Xps

Díez-Pérez, Ismael, Vericat, Carolina, Gorostiza, Pau, Sanz, Fausto, (2006). The iron passive film breakdown in chloride media may be mediated by transient chloride-induced surface states located within the band gap Electrochemistry Communications , 8, (4), 627-632

Despite its tremendous scientific and economic impact, the mechanism that triggers metal passive film breakdown in the presence of aggressive ions remains under discussion. We have studied the iron passive film in chloride media using X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy and electrochemical tunneling spectroscopy (ECTS). Ex situ XPS reveal that the film consists exclusively of an Fe(III) oxide without chloride content. In situ ECTS has been used to build up conductance maps of the Fe electrode during its electrochemical oxidation in a borate buffer solution and its breakdown when the film is grown in the presence of chloride. This conductograms provide direct and in situ experimental evidence of chloride-induced surface states within the band gap of the oxide film (~3.3eV). These states enable new charge exchange pathways that allow hole capture at the surface of the n-type Fe(III) oxide. The blocking of VB processes that occurs in the iron passive film is no longer present in chloride media, and electrode corrosion can proceed through these new states. We propose a simple 3-step mechanism for the process, in which chloride anions form an oxidizing Fe(II) surface intermediate but do not participate directly in the reaction.

Keywords: Electrochemical tunneling spectroscopy, Electronic band structure, Fe passive film, Aqueous chloride corrosion, Semiconductor decomposition, Interface states