Publications

by Keyword: Stiffness


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Farré, N., Otero, J., Falcones, B., Torres, M., Jorba, I., Gozal, D., Almendros, I., Farré, R., Navajas, D., (2018). Intermittent hypoxia mimicking sleep apnea increases passive stiffness of myocardial extracellular matrix. A multiscale study Frontiers in Physiology 9, Article 1143

Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea (OSA), a very prevalent respiratory disease associated with increased cardiovascular morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH) mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and molecular levels. However, it remains unclear whether IH modifies the passive stiffness of the cardiac tissue extracellular matrix (ECM). Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of left ventricular (LV) myocardium in a murine model of OSA. Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20% O2 40 s–6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each age were kept under normoxia. Fresh LV myocardial strips (~7 mm × 1 mm × 1 mm) were prepared, and their ECM was obtained by decellularization. Myocardium ECM macroscale mechanics were measured by performing uniaxial stress–strain tensile tests. Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain and Young’s modulus (EM) computed at 0.2 strain by fitting Fung’s constitutive model to the stress–strain relationship. ECM stiffness was characterized at the microscale as the Young’s modulus (Em) measured in decellularized tissue slices (~12 μm tick) by atomic force microscopy. Results: Intermittent hypoxia induced a ~1.5-fold increase in σ (p < 0.001) and a ~2.5-fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In contrast, no significant differences emerged in Em among IH-exposed and normoxic mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young and aged mice. Conclusion: The marked IH-induced increases in macroscale stiffness of LV myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM stiffness suggests that the significant increases in macroscale stiffening are primarily mediated by 3D structural ECM remodeling.

Keywords: Atomic force microscopy, Heart mechanics, Myocardial stiffness, Obstructive sleep apnea, Tensile test, Ventricular strain


Menal, M. J., Jorba, I., Torres, M., Montserrat, J. M., Gozal, D., Colell, A., Piñol-Ripoll, G., Navajas, D., Almendros, I., Farré, R., (2018). Alzheimer's disease mutant mice exhibit reduced brain tissue stiffness compared to wild-type mice in both normoxia and following intermittent hypoxia mimicking sleep apnea Frontiers in Neurology 9, Article 1

Background: Evidence from patients and animal models suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer’s disease (AD) and that AD is associated with reduced brain tissue stiffness. Aim: To investigate whether intermittent hypoxia (IH) alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA. Methods: Six-eight month old (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) AD mutant mice and wild-type (WT) littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day) or normoxia for 8 weeks. After euthanasia, the stiffness (E) of 200-μm brain cortex slices was measured by atomic force microscopy. Results: Two-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT), but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice. Conclusion: AD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

Keywords: Animal model, Atomic force microscopy, Brain mechanics, Cortex stiffness, Neurodegenerative disease


Jorba, I., Menal, M. J., Torres, M., Gozal, D., Piñol-Ripoll, G., Colell, A., Montserrat, J. M., Navajas, D., Farré, R., Almendros, I., (2017). Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice Journal of the Mechanical Behavior of Biomedical Materials , 71, 106-113

Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O2 40 s – 6% O2 20 s) for 8 weeks (6 h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122 Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice.

Keywords: Atomic Force Microscopy, Brain mechanics, Cortex stiffness, Hippocampus stiffness, Obstructive sleep apnea, Young's modulus


Ladoux, B., Mège, R. M., Trepat, X., (2016). Front-rear polarization by mechanical cues: From single cells to tissues Trends in Cell Biology 26, (6), 420-433

Directed cell migration is a complex process that involves front-rear polarization, characterized by cell adhesion and cytoskeleton-based protrusion, retraction, and contraction of either a single cell or a cell collective. Single cell polarization depends on a variety of mechanochemical signals including external adhesive cues, substrate stiffness, and confinement. In cell ensembles, coordinated polarization of migrating tissues results not only from the application of traction forces on the extracellular matrix but also from the transmission of mechanical stress through intercellular junctions. We focus here on the impact of mechanical cues on the establishment and maintenance of front-rear polarization from single cell to collective cell behaviors through local or large-scale mechanisms.

Keywords: Cell forces, Cell polarity, Collective cell migration, Mechanobiology, Micropatterning, Substrate stiffness


Crosas-Molist, E., Meirelles, T., López-Luque, J., Serra-Peinado, C., Selva, J., Caja, L., Gorbenko Del Blanco, D., Uriarte, J. J., Bertran, E., Mendizábal, Y., Hernández, V., García-Calero, C., Busnadiego, O., Condom, E., Toral, D., Castellà, M., Forteza, A., Navajas, D., Sarri, E., Rodríguez-Pascual, F., Dietz, H. C., Fabregat, I., Egea, G., (2015). Vascular smooth muscle cell phenotypic changes in patients with marfan syndrome Arteriosclerosis, Thrombosis, and Vascular Biology , 35, (4), 960-972

Objective - Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Approach and Results - Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. Conclusions - In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation.

Keywords: Actin, Aortic aneurysms, Aortic stiffness, Extracellular matrix, Focal adhesion, Myocardin, RhoA, TGF-β


Krishnan, Ramaswamy, Klumpers, Darinka D., Park, Chan Y., Rajendran, Kavitha, Trepat, Xavier, van Bezu, Jan, van Hinsbergh, Victor W. M., Carman, Christopher V., Brain, Joseph D., Fredberg, Jeffrey J., Butler, James P., van Nieuw Amerongen, Geerten P., (2011). Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces American Journal of Physiology - Cell Physiology , 300, (1), C146-C154

A hallmark of many, sometimes life-threatening, inflammatory diseases and disorders is vascular leakage. The extent and severity of vascular leakage is broadly mediated by the integrity of the endothelial cell (EC) monolayer, which is in turn governed by three major interactions: cell-cell and cell-substrate contacts, soluble mediators, and biomechanical forces. A potentially critical but essentially uninvestigated component mediating these interactions is the stiffness of the substrate to which the endothelial monolayer is adherent. Accordingly, we investigated the extent to which substrate stiffening influences endothelial monolayer disruption and the role of cell-cell and cell-substrate contacts, soluble mediators, and physical forces in that process. Traction force microscopy showed that forces between cell and cell and between cell and substrate were greater on stiffer substrates. On stiffer substrates, these forces were substantially enhanced by a hyperpermeability stimulus (thrombin, 1 U/ml), and gaps formed between cells. On softer substrates, by contrast, these forces were increased far less by thrombin, and gaps did not form between cells. This stiffness-dependent force enhancement was associated with increased Rho kinase activity, whereas inhibition of Rho kinase attenuated baseline forces and lessened thrombin-induced inter-EC gap formation. Our findings demonstrate a central role of physical forces in EC gap formation and highlight a novel physiological mechanism. Integrity of the endothelial monolayer is governed by its physical microenvironment, which in normal circumstances is compliant but during pathology becomes stiffer.

Keywords: Contraction, Human umbilical vein endothelial cells, Permeability, Traction force, Cell-cell contact, Cell-substrate contact, Substrate stiffness, Rho kinase, Vascular endothelial cadherin, Thrombin


Byrne, Damien P., Lacroix, Damien, Prendergast, Patrick J., (2011). Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach Journal of Orthopaedic Research , 29, (10), 1496-1503

In this study, a three-dimensional (3D) computational simulation of bone regeneration was performed in a human tibia under realistic muscle loading. The simulation was achieved using a discrete lattice modeling approach combined with a mechanoregulation algorithm to describe the cellular processes involved in the healing process namely proliferation, migration, apoptosis, and differentiation of cells. The main phases of fracture healing were predicted by the simulation, including the bone resorption phase, and there was a qualitative agreement between the temporal changes in interfragmentary strain and bending stiffness by comparison to experimental data and clinical results. Bone healing was simulated beyond the reparative phase by modeling the transition of woven bone into lamellar bone. Because the simulation has been shown to work with realistic anatomical 3D geometry and muscle loading, it demonstrates the potential of simulation tools for patient-specific pre-operative treatment planning.

Keywords: Tissue differentiation, Computational analysis, Mechanical conditions, Bone regeneration, Weight-bearing, Proliferation, Osteoblast, Stiffness, Ingrowth, Scaffold


Angelini, T. E., Hannezo, E., Trepat, X., Fredberg, J. J., Weitz, D. A., (2010). Cell migration driven by cooperative substrate deformation patterns Physical Review Letters , 104, (16), 168104

Most eukaryotic cells sense and respond to the mechanical properties of their surroundings. This can strongly influence their collective behavior in embryonic development, tissue function, and wound healing. We use a deformable substrate to measure collective behavior in cell motion due to substrate mediated cell-cell interactions. We quantify spatial and temporal correlations in migration velocity and substrate deformation, and show that cooperative cell-driven patterns of substrate deformation mediate long-distance mechanical coupling between cells and control collective cell migration.

Keywords: Movement, Morphogenesis, Stiffness, Forces, Flocks


Park, C. Y., Tambe, D., Alencar, A. M., Trepat, X., Zhou, E. H., Millet, E., Butler, J. P., Fredberg, J. J., (2010). Mapping the cytoskeletal prestress The American Journal of Physiology - Cell Physiology , 298, (5), C1245-C1252

Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298: C1245-C1252, 2010. First published February 17, 2010; doi: 10.1152/ajpcell.00417.2009.-Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.

Keywords: Cell mechanics, Stiffness, Remodeling, Heterogeneity


Zhou, E. H., Trepat, X., Park, C. Y., Lenormand, G., Oliver, M. N., Mijailovich, S. M., Hardin, C., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition Proceedings of the National Academy of Sciences of the United States of America 106, (26), 10632-10637

Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type.

Keywords: Compression, Cytoplasm, Cytoskeleton, Mechanotransduction, Stiffness


Rico, Félix, Roca-Cusachs, Pere, Sunyer, Raimon, Farré, Ramon, Navajas, Daniel, (2007). Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips Journal of Molecular Recognition John Wiley & Sons, Ltd. 20, (6), 459-466

Cell adhesion is required for essential biological functions such as migration, tissue formation and wound healing, and it is mediated by individual molecules that bind specifically to ligands on other cells or on the extracellular matrix. Atomic force microscopy (AFM) has been successfully used to measure cell adhesion at both single molecule and whole cell levels. However, the measurement of inherent cell adhesion properties requires a constant cell-probe contact area during indentation, a requirement which is not fulfilled in common pyramidal or spherical AFM tips. We developed a procedure using focused ion beam (FIB) technology by which we modified silicon pyramidal AFM cantilever tips to obtain flat-ended cylindrical tips with a constant and known area of contact. The tips were validated on elastic gels and living cells. Cylindrical tips showed a fairly linear force-indentation behaviour on both gels and cells for indentations > 200nm. Cylindrical tips coated with ligands were used to quantify inherent dynamic cell adhesion and elastic properties. Force, work of adhesion and elasticity showed a marked dynamic response. In contrast, the deformation applied to the cells before rupture was fairly constant within the probed dynamic range. Taken together, these results suggest that the dynamic adhesion strength is counterbalanced by the dynamic elastic response to keep a constant cell deformation regardless of the applied pulling rate.

Keywords: AFM, Cell adhesion, Cell mechanics, Cell stiffness