Publications

by Keyword: Switches


By year:[ 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Darwish, Nadim., Aragonès, A. C., Darwish, T., Ciampi, S., Díez-Pérez, I., (2014). Multi-responsive photo- and chemo-electrical single-molecule switches Nano Letters 14, (12), 7064-7070

Incorporating molecular switches as the active components in nanoscale electrical devices represents a current challenge in molecular electronics. It demands key requirements that need to be simultaneously addressed including fast responses to external stimuli and stable attachment of the molecules to the electrodes while mimicking the operation of conventional electronic components. Here, we report a single-molecule switching device that responds electrically to optical and chemical stimuli. A light pointer or a chemical signal can rapidly and reversibly induce the isomerization of bifunctional spiropyran derivatives in the bulk reservoir and, consequently, switch the electrical conductivity of the single-molecule device between a low and a high level. The spiropyran derivatives employed are chemically functionalized such that they can respond in fast but practical time scales. The unique multistimuli response and the synthetic versatility to control the switching schemes of this single-molecule device suggest spiropyran derivatives as key candidates for molecular circuitry.

Keywords: Molecular Electronics, Multi-Responsive Molecular Switches, Photo- and Chemo-Switches Spiropyran, Single-Molecule Conductance, STM Break-Junction, Electronic equipment, Isomerization, Molecular electronics, Photochromism, Electrical conductivity, Electronic component, Molecular switches, Single-molecule conductances, Single-molecule devices, Spiropyran derivatives, Spiropyrans, STM Break-Junction, Molecules


Artés, Juan M., López-Martínez, Montserrat, Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2014). Conductance switching in single wired redox proteins Small 10, (13), 2537-2541

Switching events in the current flowing through individual redox proteins, (azurin) spontaneously wired between two electrodes, are studied using an electrochemical scanning tunneling microscope (ECSTM). These switching events in the current–time trace are characterized using conductance histograms, and reflect the intrinsic redox thermodynamic dispersion in the azurin population. This conductance switching may pose limitations to miniaturizing redox protein-based devices.

Keywords: Bioelectronics, Protein transistors, Molecular junctions, Switches, STM


Nevola, L., Martín-Quirós, A., Eckelt, K., Camarero, N., Tosi, S., Llobet, A., Giralt, E., Gorostiza, P., (2013). Light-regulated stapled peptides to inhibit protein-protein interactions involved in clathrin-mediated endocytosis Angewandte Chemie - International Edition , 52, (30), 7704-7708

Control of membrane traffic: Photoswitchable inhibitors of protein-protein interactions were applied to photoregulate clathrin-mediated endocytosis (CME) in living cells. Traffic light (TL) peptides acting as "stop" and "go" signals for membrane traffic can be used to dissect the role of CME in receptor internalization and in cell growth, division, and differentiation.

Keywords: Clathrin-mediated endocytosis, Optopharmacology, Peptides, Photoswitches, Protein-protein interactions


Guo, S., Artés, J. M., Díez-Pérez, I., (2013). Electrochemically-gated single-molecule electrical devices Electrochimica Acta 63rd Annual Meeting of the International Society of Electrochemistry , Elsevier (Prague, Czech Republic) 110, 741-753

In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour.

Keywords: Electrochemical gate, Electrochemical switches, NDR, Single-molecule junctions, Unipolar/ambipolar FETs