Publications

by Keyword: Telerobotics


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Hernansanz, A., Amat, J., Casals, A., (2012). Virtual Robot: A new teleoperation paradigm for minimally invasive robotic surgery IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 749-754

This paper presents a novel teleoperation paradigm, the Virtual Robot (VR), focused on facilitating the surgeon tasks in minimally invasive robotic surgery. The VR has been conceived to increase the range of applicability of traditional master slave teleoperation architectures by means of an automatic cooperative behavior that assigns the execution of the ongoing task to the most suitable robot. From the user's point of view, the VR internal operation must be automatic and transparent. A set of evaluation indexes have been developed to obtain the suitability of each robot as well as an algorithm to determine the optimal instant of time to execute a task transfer. Several experiments demonstrate the usefulness of the VR, as well as indicates the next steps of the research.

Keywords: Cameras, Collision avoidance, Indexes, Joints, Robots, Surgery, Trajectory, Medical robotics, Surgery, Telerobotics, VR internal operation, Automatic cooperative behavior, Evaluation indexes, Master slave teleoperation architectures, Minimally invasive robotic surgery, Task transfer, Virtual robot


Hernansanz, A., Amat, J., Casals, A., (2009). Optimization criterion for safety task transfer in cooperative robotics 14th International Conference on Advanced Robotics (ICAR) , IEEE (Munich, Germany) , 254-259

This paper presents a strategy for a cooperative multirobot system, constituting a virtual robot. The virtual robot is composed of a set of robotic arms acting as only one, transferring the execution of a teleoperated task from one to another when necessary. To decide which of the robots is the most suitable to execute the task at every instant, a multiparametric decision function has been defined. This function is based on a set of intrinsic and extrinsic evaluation indexes of the robot. Since the internal operation of the virtual robot must be transparent to the user, a control architecture has been developed.

Keywords: Control engineering computing, Manipulators, Multi-robot systems, Optimsation, Telerobotics, Virtual reality