by Keyword: Treatment

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Monteil, Vanessa, Kwon, Hyesoo, Prado, Patricia, Hagelkrüys, Astrid, Wimmer, Reiner A., Stahl, Martin, Leopoldi, Alexandra, Garreta, Elena, Hurtado Del Pozo, Carmen, Prosper, Felipe, Romero, Juan Pablo, Wirnsberger, Gerald, Zhang, Haibo, Slutsky, Arthur S., Conder, Ryan, Montserrat, Nuria, Mirazimi, Ali, Penninger, Josef M., (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 Cell 181, (4), 905-913.e7

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.

Keywords: COVID-19, Angiotensin converting enzyme 2, Blood vessels, Human organoids, Kidney, Severe acute respiratory syndrome coronavirus, Spike glycoproteins, Treatment

Parmar, J., Villa, K., Vilela, D., Sánchez, S., (2017). Platinum-free cobalt ferrite based micromotors for antibiotic removal Applied Materials Today 9, 605-611

Self-propelled micromotors have previously shown to enhance pollutant removal compared to non-motile nano-micro particles. However, these systems are expensive, difficult to scale-up and require surfactant for efficient work. Efficient and inexpensive micromotors are desirable for their practical applications in water treatment technologies. We describe cobalt-ferrite based micromotors (CFO micromotors) fabricated by a facile and scalable synthesis, that produce hydroxyl radicals via Fenton-like reaction and take advantage of oxygen gas generated during this reaction for self-propulsion. Once the reaction is complete, the CFO micromotors can be easily separated and collected due to their magnetic nature. The CFO micromotors are demonstrated for highly efficient advanced oxidative removal of tetracycline antibiotic from the water. Furthermore, the effects of different concentrations of micromotors and hydrogen peroxide on the antibiotic degradation were studied, as well as the generation of the highly reactive hydroxyl radicals responsible for the oxidation reaction.

Keywords: Degradation, Fenton reaction, Microbots, Nanomotors, Self-propelled Micromotors, Water treatment

Parmar, J., Vilela, D., Pellicer, E., Esqué-de los Ojos, D., Sort, J., Sánchez, S., (2016). Reusable and long-lasting active microcleaners for heterogeneous water remediation Advanced Functional Materials 26, (23), 4152-4161

Self-powered micromachines are promising tools for future environmental remediation technology. Waste-water treatment and water reuse is an essential part of environmental sustainability. Herein, we present reusable Fe/Pt multi-functional active microcleaners that are capable of degrading organic pollutants (malachite green and 4-nitrophenol) by generated hydroxyl radicals via a Fenton-like reaction. Various different properties of microcleaners, such as the effect of their size, short-term storage, long-term storage, reusability, continuous swimming capability, surface composition, and mechanical properties, are studied. It is found that these microcleaners can continuously swim for more than 24 hours and can be stored more than 5 weeks during multiple cleaning cycles. The produced microcleaners can also be reused, which reduces the cost of the process. During the reuse cycles the outer iron surface of the Fe/Pt microcleaners generates the in-situ, heterogeneous Fenton catalyst and releases a low concentration of iron into the treated water, while the mechanical properties also appear to be improved due to both its surface composition and structural changes. The microcleaners are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and finite-element modeling (FEM).

Keywords: Catalysts, Heterogeneous catalysis, Microcleaners, Micromotors, Nanorobots, Wastewater treatment

Arvizu-Rodríguez, L. E., Palacios-Padrós, A., Chalé-Lara, F., Fernández-Muñoz, J. L., Díez-Pérez, I., Sanz, F., Espinosa-Faller, F. J., Sandoval, J., Caballero-Briones, F., (2015). Phase and surface modification by electrochemical post deposition treatments in ultrasonic-assisted CuInSe2/Cu electrodeposited films Chalcogenide Letters , 12, (10), 537-545

CuInSe2 films were prepared onto Cu-cladded substrates by ultrasonic-assisted electrodeposition using different bath compositions and a fixed deposition potential of E=-1500 mV vs Ag/AgCl. In situ electrochemical treatments named selenization and electrocrystallization, in a Se4+ electrolyte were applied to modify the morphology, film structure and the phase composition. Films were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and photocurrent response. A Cu2-xSe layer develops as the electrode is introduced into the electrolyte. The presence of Cu-In, In-Se, Cu-Se, cubic, hexagonal and tetragonal CuInSe2 phases as well as elemental In and Se was observed. After selenization, partial phase dissolution and Se deposition is observed and after the electrocrystallization treatment the secondary phases such as Cu-Se, Cu-In, In and Se reduce substantially and the grain sizes increase, as well as the photocurrent response. Phase diagrams are constructed for each set of films and reaction mechanisms are proposed to explain the phase evolution.

Keywords: CuInSe2, Electrodeposition, In situ electrochemical treatments, Phase composition, Surface modification

Jané, R., (2014). Engineering Sleep Disorders: From classical CPAP devices toward new intelligent adaptive ventilatory therapy IEEE Pulse , 5, (5), 29-32

Among the most common sleep disorders are those related to disruptions in airflow (apnea) or reductions in the breath amplitude (hypopnea) with or without obstruction of the upper airway (UA). One of the most important sleep disorders is obstructive sleep apnea (OSA). This sleep-disordered breathing, quantified by the apnea-hypopnea index (AHI), can produce a significant reduction of oxygen saturation and an abnormal elevation of carbon dioxide levels in the blood. Apnea and hypopnea episodes are associated with arousals and sleep fragmentation during the night and compensatory response of the autonomic nervous system.

Keywords: Biomedical engineering, Biomedical measurements, Biomedical monitoring, Breathing disorders, Medical conditions, Medical treatment, Sleep, Sleep apnea

Gonzalez, H., Acevedo, H., Arizmendi, C., Giraldo, B. F., (2013). Methodology for determine the moment of disconnection of patients of the mechanical ventilation using discrete wavelet transform Complex Medical Engineering (CME) 2013 ICME International Conference , IEEE (Beijing, China) , 483-486

The process of weaning from mechanical ventilation is one of the challenges in intensive care units. 66 patients under extubation process (T-tube test) were studied: 33 patients with successful trials and 33 patients who failed to maintain spontaneous breathing and were reconnected. Each patient was characterized using 7 time series from respiratory signals, and for each serie was evaluated the discrete wavelet transform. It trains a neural network for discriminating between patients from the two groups.

Keywords: discrete wavelet transforms, neural nets, patient treatment, pneumodynamics, time series, ventilation, T-tube test, discrete wavelet transform, extubation process, intensive care units, mechanical ventilation, moment of disconnection, neural network, patients, respiratory signals, spontaneous breathing, time series, weaning, Mechanical Ventilation, Neural Networks, Time series from respiratory signals, Wavelet Transform

Antelis, J.M., Montesano, L., Giralt, X., Casals, A., Minguez, J., (2012). Detection of movements with attention or distraction to the motor task during robot-assisted passive movements of the upper limb Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6410-6413

Robot-assisted rehabilitation therapies usually focus on physical aspects rather than on cognitive factors. However, cognitive aspects such as attention, motivation, and engagement play a critical role in motor learning and thus influence the long-term success of rehabilitation programs. This paper studies motor-related EEG activity during the execution of robot-assisted passive movements of the upper limb, while participants either: i) focused attention exclusively on the task; or ii) simultaneously performed another task. Six healthy subjects participated in the study and results showed lower desynchronization during passive movements with another task simultaneously being carried out (compared to passive movements with exclusive attention on the task). In addition, it was proved the feasibility to distinguish between the two conditions.

Keywords: Electrodes, Electroencephalography, Induction motors, Medical treatment, Robot sensing systems, Time frequency analysis, Biomechanics, Cognition, Electroencephalography, Medical robotics, Medical signal detection, Medical signal processing, Patient rehabilitation, Attention, Cognitive aspects, Desynchronization, Engagement, Motivation, Motor learning, Motor task, Motor-related EEG activity, Physical aspects, Robot-assisted passive movement detection, Robot-assisted rehabilitation therapies, Upper limb

Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103

The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.

Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton

Amigo, L. E., Casals, A., Amat, J., (2011). Design of a 3-DoF joint system with dynamic servo-adaptation in orthotic applications Proceedings 2011 IEEE International Conference on Robotics and Automation (ICRA) , IEEE (Shanghai, China) , 3700-3705

Most exoskeleton designs rely on structures and mechanical joints that do not guarantee the right match between the orthosis and the user. This paper proposes a virtual joint model based on three active degrees of freedom aimed to emulate a human joint. This joint is capable of performing a dynamic servo-adaptation in real-time to avoid misalignments and to provide a flexible adjustment to different users' sizes in order to avoid undesirable interaction forces.

Keywords: Actuators, Elbow, Exoskeletons, Joints, Knee, Medical treatment

Seira, O., Gavin, R., Gil, V., Llorens, F., Rangel, A., Soriano, E., del Rio, J. A., (2010). Neurites regrowth of cortical neurons by GSK3 beta inhibition independently of Nogo receptor 1 Journal of Neurochemistry , 113, (6), 1644-1658

P>Lesioned axons do not regenerate in the adult mammalian CNS, owing to the over-expression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 beta (GSK3 beta) and extracellular-related kinase (ERK) 1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3 beta and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: (i) cerebellar granule cells and (ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3 beta inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Finally, these regenerative effects were corroborated in the lesioned entorhino-hippocampal pathway in NgR1-/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.

Keywords: Axon inhibition, Nogo Receptor complex, Organotypic slice cultures, Pharmacological treatment

Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291

Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.

Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring

Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices , 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium

Fiz, J. A., Morera Prat, J., Jané, R., (2009). Treatment of patients with simple snoring Archivos de Bronconeumología 45, (10), 508-515

Management of snoring is part of the treatment offered to patients with obstructive sleep apnea syndrome. In patients who do not have this syndrome, however, snoring should be treated according to the severity of the condition. General or specific therapeutic measures should be applied to snorers that have concomitant cardiovascular disease or unrefreshing sleep and in cases in which an individual's snoring disturbs his/her partner's sleep. The present review examines the treatments currently available for snorers and the current state of knowledge regarding each option. It will also focus on the possible indications of these treatments and evaluate their effectiveness.

Keywords: Simple snoring, Treatment, General measures, Surgery