Publications

by Keyword: Viscosity


By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Bennett, Mark, Cantini, Marco, Reboud, Julien, Cooper, Jonathan M., Roca-Cusachs, Pere, Salmeron-Sanchez, Manuel, (2018). Molecular clutch drives cell response to surface viscosity Proceedings of the National Academy of Sciences of the United States of America 115, (6), 1192-1197

Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.

Keywords: Matrix rigidity, Molecular clutch, Surface viscosity, Mechanotransduction, Cell differentiation


Rodriguez-Villarreal, A. I., Arundell, M., Carmona, M., Samitier, J., (2010). High flow rate microfluidic device for blood plasma separation using a range of temperatures Lab on a Chip 10, (2), 211-219

A hybrid microfluidic device that uses hydrodynamic forces to separate human plasma from blood cells has been designed and fabricated and the advantageous effects of temperature and flow rates are investigated in this paper. The blood separating device includes an inlet which is reduced by approximately 20 times to a small constrictor channel, which then opens out to a larger output channel with a small lateral channel for the collection of plasma. When tested the device separated plasma from whole blood using a wide range of flow rates, between 50 mu l min(-1) and 200 mu l min(-1), at the higher flow rates injected by hand and at temperatures ranging from 23 degrees C to 50 degrees C, the latter resulting in an increase in the cell-free layer of up to 250%. It was also tested continuously using between 5% and 40% erythrocytes in plasma and whole blood without blocking the channels or hemolysis of the cells. The mean percentage of plasma collected after separation was 3.47% from a sample of 1 ml. The percentage of cells removed from the plasma varied depending on the flow rate used, but at 37 degrees C ranged between 95.4 +/- 1% and 97.05 +/- 05% at 100 mu l min(-1) and 200 mu l min(-1), respectively. The change in temperature also had an effect on the number of cells removed from the plasma which was between 93.5 +/- 0.65% and 97.01 +/- 0.3% at 26.9 degrees C and 37 degrees C, respectively, using a flow rate of 100 mu l min(-1). Due to its ability to operate in a wide range of conditions, it is envisaged that this device can be used in in vitro 'lab on a chip' applications, as well as a hand-held point of care (POC) device.

Keywords: On-a-chip, Cells, Viscosity, Membrane