by Keyword: density

By year:[ 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Rodríguez-Pereira, Cristina, Lagunas, Anna, Casanellas, Ignasi, Vida, Yolanda, Pérez-Inestrosa, Ezequiel, Andrades, José A., Becerra, José, Samitier, Josep, Blanco, Francisco J., Magalhães, Joana, (2020). RGD-dendrimer-poly(L-lactic) acid nanopatterned substrates for the early chondrogenesis of human mesenchymal stromal cells derived from osteoarthritic and healthy donors Materials 13, (10), 2247

Aiming to address a stable chondrogenesis derived from mesenchymal stromal cells (MSCs) to be applied in cartilage repair strategies at the onset of osteoarthritis (OA), we analyzed the effect of arginine–glycine–aspartate (RGD) density on cell condensation that occurs during the initial phase of chondrogenesis. For this, we seeded MSC-derived from OA and healthy (H) donors in RGD-dendrimer-poly(L-lactic) acid (PLLA) nanopatterned substrates (RGD concentrations of 4 × 10−9, 10−8, 2.5 × 10−8, and 10−2 w/w), during three days and compared to a cell pellet conventional three-dimensional culture system. Molecular gene expression (collagens type-I and II–COL1A1 and COL2A1, tenascin-TNC, sex determining region Y-box9-SOX9, and gap junction protein alpha 1–GJA1) was determined as well as the cell aggregates and pellet size, collagen type-II and connexin 43 proteins synthesis. This study showed that RGD-tailored first generation dendrimer (RGD-Cys-D1) PLLA nanopatterned substrates supported the formation of pre-chondrogenic condensates from OA- and H-derived human bone marrow-MSCs with enhanced chondrogenesis regarding the cell pellet conventional system (presence of collagen type-II and connexin 43, both at the gene and protein level). A RGD-density dependent trend was observed for aggregates size, in concordance with previous studies. Moreover, the nanopatterns’ had a higher effect on OA-derived MSC morphology, leading to the formation of bigger and more compact aggregates with improved expression of early chondrogenic markers.

Keywords: Cell condensation, Gap junctions, RGD-density, Chondrogenic differentiation, Osteoarthritis

Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2018). Onset and offset estimation of the neural inspiratory time in surface diaphragm electromyography: A pilot study in healthy subjects IEEE Journal of Biomedical and Health Informatics 22, (1), 67-76

This study evaluates the onset and offset of neural inspiratory time estimated from surface diaphragm electromyographic (EMGdi) recordings. EMGdi and airflow signals were recorded in ten healthy subjects according to two respiratory protocols based on respiratory rate (RR) increments, from 15 to 40 breaths per minute (bpm), and fractional inspiratory time (Ti/Ttot) decrements, from 0.54 to 0.18. The analysis of diaphragm electromyographic (EMGdi) signal amplitude is an alternative approach for the quantification of neural respiratory drive (NRD). The EMGdi amplitude was estimated using the fixed sample entropy computed over a 250 ms moving window of the EMGdi signal (EMGdifse). The neural onset was detected through a dynamic threshold over the EMGdifse using the kernel density estimation method, while neural offset was detected by finding when the EMGdifse had decreased to 70 % of the peak value reached during inspiration. The Bland-Altman analysis between airflow and neural onsets showed a global bias of 46 ms in the RR protocol and 22 ms in the Ti/Ttot protocol. The Bland-Altman analysis between airflow and neural offsets reveals a global bias of 11 ms in the RR protocol and -2 ms in the Ti/Ttot protocol. The relationship between pairs of RR values (Pearson’s correlation coefficient of 0.99, Bland- Altman limits of -2.39 to 2.41 bpm, and mean bias of 0.01 bpm) and between pairs of Ti/Ttot values (Pearson’s correlation coefficient of 0.86, Bland-Altman limits of -0.11 to 0.10, and mean bias of -0.01) showed a good agreement. In conclusion, we propose a method for determining neural onset and neural offset based on non-invasive recordings of the electrical activity of the diaphragm that requires no filtering of cardiac muscle interference.

Keywords: Kernel density estimation (KDE),, Surface diaphragm electromyographic,, (EMGdi) signal,, Inspiratory time,, Neural respiratory drive (NRD),, Neural inspiratory time,, Fixed sample entropy (fSampEn)

Bosch, M., Castro, J., Sur, M., Hayashi, Y., (2017). Photomarking relocalization technique for correlated two-photon and electron microcopy imaging of single stimulated synapses Synapse Development - Methods and Protocols (Methods in Molecular Biology) (ed. Poulopoulos , A.), Humana Press (New York, USA) 1538, 185-214

Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.

Keywords: Correlated imaging, DAB, Dendritic spine, Photobranding, Photoetching, Photomarking, Postsynaptic density, Serial-section transmission electron microscopy, Synapse, Time-lapse live two-photon fluorescence microscopy

Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., Sanz, F., Hihath, J., Ruiz, E., Díez-Pérez, I., (2016). Large conductance switching in a single-molecule device through room temperature spin-dependent transport Nano Letters 16, (1), 218-226

Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover FeII complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

Keywords: Density functional calculations, Magnetoresistance, Single-molecule junctions, Spin orbit coupling, Spin-crossover complexes, Spinterface, STM break-junction

Blanchard, R., Morin, C., Malandrino, A., Vella, A., Sant, Z., Hellmich, C., (2016). Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics International Journal for Numerical Methods in Biomedical Engineering , 32, (9), e02760

Summary: While in clinical settings, bone mineral density measured by computed tomography (CT) remains the key indicator for bone fracture risk, there is an ongoing quest for more engineering mechanics-based approaches for safety analyses of the skeleton. This calls for determination of suitable material properties from respective CT data, where the traditional approach consists of regression analyses between attenuation-related grey values and mechanical properties. We here present a physics-oriented approach, considering that elasticity and strength of bone tissue originate from the material microstructure and the mechanical properties of its elementary components. Firstly, we reconstruct the linear relation between the clinically accessible grey values making up a CT, and the X-ray attenuation coefficients quantifying the intensity losses from which the image is actually reconstructed. Therefore, we combine X-ray attenuation averaging at different length scales and over different tissues, with recently identified 'universal' composition characteristics of the latter. This gives access to both the normally non-disclosed X-ray energy employed in the CT-device and to in vivo patient-specific and location-specific bone composition variables, such as voxel-specific mass density, as well as collagen and mineral contents. The latter feed an experimentally validated multiscale elastoplastic model based on the hierarchical organization of bone. Corresponding elasticity maps across the organ enter a finite element simulation of a typical load case, and the resulting stress states are increased in a proportional fashion, so as to check the safety against ultimate material failure. In the young patient investigated, even normal physiological loading is probable to already imply plastic events associated with the hydrated mineral crystals in the bone ultrastructure, while the safety factor against failure is still as high as five.

Keywords: Bone, Bone mass density, Continuum micromechanics, Elastoplasticity, Spine, Strength, X-ray physics

Arcentales, A., Voss, A., Caminal, P., Bayes-Genis, A., Domingo, M. T., Giraldo, B. F., (2013). Characterization of patients with different ventricular ejection fractions using blood pressure signal analysis CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 795-798

Ischemic and dilated cardiomyopathy are associated with disorders of myocardium. Using the blood pressure (BP) signal and the values of the ventricular ejection fraction, we obtained parameters for stratifying cardiomyopathy patients as low- and high-risk. We studied 48 cardiomyopathy patients characterized by NYHA ≥2: 19 patients with dilated cardiomyopathy (DCM) and 29 patients with ischemic cardiomyopathy (ICM). The left ventricular ejection fraction (LVEF) percentage was used to classify patients in low risk (LR: LVEF > 35%, 17 patients) and high risk (HR: LVEF ≤ 35%, 31 patients) groups. From the BP signal, we extracted the upward systolic slope (BPsl), the difference between systolic and diastolic BP (BPA), and systolic time intervals (STI). When we compared the LR and HR groups in the time domain analysis, the best parameters were standard deviation (SD) of 1=STI, kurtosis (K) of BPsl, and K of BPA. In the frequency domain analysis, very low frequency (VLF) and high frequency (HF) bands showed statistically significant differences in comaprisons of LR and HR groups. The area under the curve of power spectral density was the best parameter in all classifications, and particularly in the very-low-and high- frequency bands (p <; 0.001). These parameters could help to improve the risk stratification of cardiomyopathy patients.

Keywords: blood pressure measurement, cardiovascular system, diseases, medical disorders, medical signal processing, statistical analysis, time-domain analysis, BP signal, HR groups, LR groups, blood pressure signal analysis, cardiomyopathy patients, diastolic BP, dilated cardiomyopathy, frequency domain analysis, high-frequency bands, ischemic cardiomyopathy, left ventricular ejection fraction, low-frequency bands, myocardium disorders, patient characterization, power spectral density curve, standard deviation, statistical significant differences, systolic BP, systolic slope, systolic time intervals, time domain analysis, ventricular ejection fraction, Abstracts, Databases, Parameter extraction, Telecommunication standards, Time-frequency analysis

Udina, S., Carmona, M., Pardo, A., Calaza, C., Santander, J., Fonseca, L., Marco, S., (2012). A micromachined thermoelectric sensor for natural gas analysis: Multivariate calibration results Sensors and Actuators B: Chemical 166-167, 338-348

The potential use of a micromachined thermopile based sensor device for analyzing natural gas is explored. The sensor consists of a thermally isolated hotplate which is heated by the application of a sequence of programmed voltages to an integrated heater. Once the hotplate reaches a stationary temperature, the thermopile provides a signal proportional to the hotplate temperature. These signals are processed in order to determine different natural gas properties. Sensor response is mainly dependent on the thermal conductivity of the surrounding gas at different temperatures. Seven predicted properties (normal density, Superior Heating Value, Wobbe index and the concentrations of methane, ethane, carbon dioxide and nitrogen) are calibrated against sensor signals by using multivariate regression, in particular Partial Least Squares. Experimental data have been used for calibration and validation. Results show property prediction capability with reasonable accuracy except for prediction of carbon dioxide concentration. A detailed uncertainty analysis is provided to better understand the metrological limits of the system. These results imply for the first time the possibility of designing unprecedented low-cost natural gas analyzers. The concept may be extended to other constrained gas mixtures (e.g. of a known number of components) to enable low-cost multicomponent gas analyzers.

Keywords: Gas sensor, Natural gas, MEMS, Superior Heating Value, density, PLS

Solà, J., Fiz, J. A., Morera, J., Jané, R., (2012). Multiclass classification of subjects with sleep apnoea-hypopnoea syndrome through snoring analysis Medical Engineering and Physics , 34, (9), 1213-1220

The gold standard for diagnosing sleep apnoea-hypopnoea syndrome (SAHS) is polysomnography (PSG), an expensive, labour-intensive and time-consuming procedure. Accordingly, it would be very useful to have a screening method to allow early assessment of the severity of a subject, prior to his/her referral for PSG. Several differences have been reported between simple snorers and SAHS patients in the acoustic characteristics of snoring and its variability. In this paper, snores are fully characterised in the time domain, by their sound intensity and pitch, and in the frequency domain, by their formant frequencies and several shape and energy ratio measurements. We show that accurate multiclass classification of snoring subjects, with three levels of SAHS, can be achieved on the basis of acoustic analysis of snoring alone, without any requiring information on the duration or the number of apnoeas. Several classification methods are examined. The best of the approaches assessed is a Bayes model using a kernel density estimation method, although good results can also be obtained by a suitable combination of two binary logistic regression models. Multiclass snore-based classification allows early stratification of subjects according to their severity. This could be the basis of a single channel, snore-based screening procedure for SAHS.

Keywords: Bayes classifier, Kernel density estimation, Sleep apnoea, Snoring

Garde, A., Giraldo, B.F., Jané, R., Latshang, T.D., Turk, A.J., Hess, T., Bosch, M-.M., Barthelmes, D., Hefti, J.P., Maggiorini, M., Hefti, U., Merz, T.M., Schoch, O.D., Bloch, K.E., (2012). Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 707-710

High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1st and 2nd ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO2 and periodic breathing cycles significantly increased with acclimatization (p-value <; 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO2, through a significant negative correlation (p-value <; 0.01). Higher Pm is observed at climbing periods visually labeled as PB with >; 5 periodic breathing cycles through a significant positive correlation (p-value <; 0.01). Our data demonstrate that quantification of the respiratory volum- signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.

Keywords: Frequency domain analysis, Frequency modulation, Heart, Sleep apnea, Ventilation, Visualization, Cardiology, Medical disorders, Medical signal processing, Plethysmography, Pneumodynamics, Sensitivity analysis, Sleep, Spectral analysis, Cheyne-Stokes respiration, Climbing periods, Dataset, Heart failure patients, High altitude PB, High altitude periodic breathing, Hypobaric hypoxia, Linear discriminant analysis, Pathophysiologic aspects, Physical activity, Physiologic mechanisms, Power spectral density, Receiver operating characteristic curve, Respiratory control, Respiratory frequency, Respiratory inductive plethysmography, Respiratory pattern, Respiratory volume signal, Sleep apnea, Spectral analysis, Spectral parameters

Garde, A., Sörnmo, L., Jané, R., Giraldo, B. F., (2010). Correntropy-based spectral characterization of respiratory patterns in patients with chronic heart failure IEEE Transactions on Biomedical Engineering 57, (8), 1964-1972

A correntropy-based technique is proposed for the characterization and classification of respiratory flow signals in chronic heart failure (CHF) patients with periodic or nonperiodic breathing (PB or nPB, respectively) and healthy subjects. The correntropy is a recently introduced, generalized correlation measure whose properties lend themselves to the definition of a correntropy-based spectral density (CSD). Using this technique, both respiratory and modulation frequencies can be reliably detected at their original positions in the spectrum without prior demodulation of the flow signal. Single-parameter classification of respiratory patterns is investigated for three different parameters extracted from the respiratory and modulation frequency bands of the CSD, and one parameter defined by the correntropy mean. The results show that the ratio between the powers in the modulation and respiratory frequency bands provides the best result when classifying CHF patients with either PB or nPB, yielding an accuracy of 88.9%. The correntropy mean offers excellent performance when classifying CHF patients versus healthy subjects, yielding an accuracy of 95.2% and discriminating nPB patients from healthy subjects with an accuracy of 94.4%.

Keywords: Autoregressive (AR) modeling, Chronic heart failure (CHF), Correntropy spectral density (CSD), Linear classification, Periodic breathing (PB)

Garde, A., Sörnmo, L., Jané, R., Giraldo, B. F., (2010). Correntropy-based nonlinearity test applied to patients with chronic heart failure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2399-2402

In this study we propose the correntropy function as a discriminative measure for detecting nonlinearities in the respiratory pattern of chronic heart failure (CHF) patients with periodic or nonperiodic breathing pattern (PB or nPB, respectively). The complexity seems to be reduced in CHF patients with higher risk level. Correntropy reflects information on both, statistical distribution and temporal structure of the underlying dataset. It is a suitable measure due to its capability to preserve nonlinear information. The null hypothesis considered is that the analyzed data is generated by a Gaussian linear stochastic process. Correntropy is used in a statistical test to reject the null hypothesis through surrogate data methods. Various parameters, derived from the correntropy and correntropy spectral density (CSD) to characterize the respiratory pattern, presented no significant differences when extracted from the iteratively refined amplitude adjusted Fourier transform (IAAFT) surrogate data. The ratio between the powers in the modulation and respiratory frequency bands R was significantly different in nPB patients, but not in PB patients, which reflects a higher presence of nonlinearities in nPB patients than in PB patients.

Keywords: Practical, Theoretical or Mathematical, Experimental/cardiology diseases, Fourier transforms, Medical signal processing, Pattern classification, Pneumodynamics, Spectral analysis, Statistical analysis, Stochastic processes/ correntropy based nonlinearity test, Chronic heart failure, Correntropy function, Respiratory pattern nonlinearities, CHF patients, Nonperiodic breathing pattern, Dataset statistical distribution, Dataset temporal structure, Nonlinear information, Null hypothesis, Gaussian linear stochastic process, Statistical test, Correntropy spectral density, Iteratively refined amplitude adjusted Fourier transform, Surrogate data, Periodic breathing pattern

Correa, L. S., Laciar, E., Mut, V., Giraldo, B. F., Torres, A., (2010). Multi-parameter analysis of ECG and Respiratory Flow signals to identify success of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) -----, 6070-6073

Statistical analysis, power spectral density, and Lempel Ziv complexity, are used in a multi-parameter approach to analyze four temporal series obtained from the Electrocardiographic and Respiratory Flow signals of 126 patients on weaning trials. In which, 88 patients belong to successful group (SG), and 38 patients belong to failure group (FG), i.e. failed to maintain spontaneous breathing during trial. It was found that mean values of cardiac inter-beat and breath durations give higher values for SG than for FG; Kurtosis coefficient of the spectrum of the rapid shallow breathing index is higher for FG; also Lempel Ziv complexity mean values associated with the respiratory flow signal are bigger for FG. Patients were then classified with a pattern recognition neural network, obtaining 80% of correct classifications (81.6% for FG and 79.5% for SG).

Keywords: Electrocardiography, Medical signal processing, Neural nets, Pattern recognition, Pneumodynamics, Signal classification, Statistical analysis, ECG, Kurtosis coefficient, Lempel Ziv complexity, Breath durations, Cardiac interbeat durations, Electrocardiography, Multiparameter analysis, Pattern recognition neural network, Power spectral density, Respiratory flow signals, Signal classification, Spontaneous breathing, Statistical analysis, Weaning trials

Arcentales, A., Giraldo, B. F., Caminal, P., Diaz, I., Benito, S., (2010). Spectral analysis of the RR series and the respiratory flow signal on patients in weaning process Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2485-2488

A considerable number of patients in weaning process have problems to keep spontaneous breathing during the trial and after it. This study proposes to extract characteristic parameters of the RR series and respiratory flow signal according to the patients' condition in weaning test. Three groups of patients have been considered: 93 patients with successful trials (group S), 40 patients that failed to maintain spontaneous breathing (group F), and 21 patients who had successful weaning trials, but that had to be reintubated before 48 hours (group R). The characterization was performed using spectral analysis of the signals, through the power spectral density, cross power spectral density and Coherence method. The parameters were extracted on the three frequency bands (VLF, LF and HF), and the principal statistical differences between groups were obtained in bands of VLF and HF. The results show an accuracy of 76.9% in the classification of the groups S and F.

Keywords: Biomedical measurement, Electrocardiography, Medical signal processing, Pneumodynamics, Spectral analysis, RR series, Coherence method, Cross power spectral density, Electrocardiography, Principal statistical differences, Respiratory flow signal, Spectral analysis, Spontaneous breathing, Weaning test