Staff member


Riccardo Zucca

Postdoctoral Researcher
Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS)
rzucca@ibecbarcelona.eu

Staff member publications

Santos-Pata, Diogo, Zucca, Riccardo, Lopez Carral, Hector, Verschure, P., (2019). A simplified spiking model of grid-cell scale and intrinsic frequencies bioRxiv , 544882

The hexagonal tessellation pattern of grid cells scales up progressively along the dorsal-to-ventral axis of the medial entorhinal cortex (MEC) layer II. This scaling gradient has been hypothesized to originate either from inter-population synaptic dynamics as postulated by attractor networks, from projected theta frequencies to different axis levels, as in oscillatory models, or from cellular dynamics dependent on hyperpolarization-activated cation currents. To test the hypothesis that intrinsic cellular properties account for the scale gradient as well as the different oscillatory frequencies observed along the dorsal-to-ventral axis, we have modeled and analyzed data from a population of grid cells simulated with spiking neurons interacting through low-dimensional attractor dynamics. To investigate the causal relationship between oscillatory frequencies and grid-scale increase, we analyzed the dominant frequencies of the membrane potential for cells with distinct after-spike dynamics. We observed that the intrinsic neuronal membrane properties of simulated cells could induce an increase of grid-scale when modulated by after-spike reset values. Differences in the membrane potential oscillatory frequency were observed along the simulated dorsal-to-ventral axis, suggesting that, rather than driving to the increase of grid-scale as proposed by interference models of grid cells, they are the result of intrinsic cellular properties of neurons at each axis level. Overall, our results suggest that the after-spike dynamics of cation currents may play a major role in determining the grid cells scale and that oscillatory frequencies are a consequence of intrinsic cellular properties that are specific to different levels of the dorsal-to-ventral axis in the MEC layer II.


Santos-Pata, Diogo, Zucca, Riccardo, López-Carral, Héctor, Verschure, P., (2019). Modulating grid cell scale and intrinsic frequencies via slow high-threshold conductances: A simplified model Neural Networks 119, 66-73

Grid cells in the medial entorhinal cortex (MEC) have known spatial periodic firing fields which provide a metric for the representation of self-location and path planning. The hexagonal tessellation pattern of grid cells scales up progressively along the MEC’s layer II dorsal-to-ventral axis. This scaling gradient has been hypothesized to originate either from inter-population synaptic dynamics as postulated by attractor networks, or from projected theta frequency waves to different axis levels, as in oscillatory models. Alternatively, cellular dynamics and specifically slow high-threshold conductances have been proposed to have an impact on the grid cell scale. To test the hypothesis that intrinsic hyperpolarization-activated cation currents account for both the scaled gradient and the oscillatory frequencies observed along the dorsal-to-ventral axis, we have modeled and analyzed data from a population of grid cells simulated with spiking neurons interacting through low-dimensional attractor dynamics. We observed that the intrinsic neuronal membrane properties of simulated cells were sufficient to induce an increase in grid scale and potentiate differences in the membrane potential oscillatory frequency. Overall, our results suggest that the after-spike dynamics of cation currents may play a major role in determining the grid cells’ scale and that oscillatory frequencies are a consequence of intrinsic cellular properties that are specific to different levels of the dorsal-to-ventral axis in the MEC layer II.

Keywords: Grid cells, Entorhinal, Hyperpolarization, Navigation, Space


López-Carral, Héctor, Santos-Pata, D., Zucca, R., Verschure, P., (2019). How you type is what you type: Keystroke dynamics correlate with affective content ACII 2019 8th International Conference on Affective Computing and Intelligent Interaction , IEEE (Cabride, UK) , 1-5

Estimating the affective state of a user during a computer task traditionally relies on either subjective reports or analysis of physiological signals, facial expressions, and other measures. These methods have known limitations, can be intrusive and may require specialized equipment. An alternative would be employing a ubiquitous device of everyday use such as a standard keyboard. Here we investigate if we can infer the emotional state of a user by analyzing their typing patterns. To test this hypothesis, we asked 400 participants to caption a set of emotionally charged images taken from a standard database with known ratings of arousal and valence. We computed different keystroke pattern dynamics, including keystroke duration (dwell time) and latency (flight time). By computing the mean value of all of these features for each image, we found a statistically significant negative correlation between dwell times and valence, and between flight times and arousal. These results highlight the potential of using keystroke dynamics to estimate the affective state of a user in a non-obtrusive way and without the need for specialized devices.

Keywords: Feature extraction, Correlation, Keyboards, Task analysis, Statistical analysis, Affective computing, Standards, Keystroke, Keyboard, Typing, Arousal, Valence, Affect


Blancas-Muñoz, M., Vouloutsi, Vasiliki, Zucca, R., Mura, Anna, Verschure, P., (2018). Hints vs distractions in intelligent tutoring systems: Looking for the proper type of help ARXIV Computer Science, (Human-Computer Interaction), 1-4

The kind of help a student receives during a task has been shown to play a significant role in their learning process. We designed an interaction scenario with a robotic tutor, in real-life settings based on an inquiry-based learning task. We aim to explore how learners' performance is affected by the various strategies of a robotic tutor. We explored two kinds of(presumable) help: hints (which were specific to the level or general to the task) or distractions (information not relevant to the task: either a joke or a curious fact). Our results suggest providing hints to the learner and distracting them with curious facts as more effective than distracting them with humour.

Keywords: Computer Science, Human-Computer Interaction


Zamora, R., Korff, S., Mi, Q., Barclay, D., Schimunek, L., Zucca, R., Arsiwalla, X. D., Simmons, R. L., Verschure, P., Billiar, T. R., Vodovotz, Y., (2018). A computational analysis of dynamic, multi-organ inflammatory crosstalk induced by endotoxin in mice PLoS Computational Biology 14, (11), e1006582

Bacterial lipopolysaccharide (LPS) induces an acute inflammatory response across multiple organs, primarily via Toll-like receptor 4 (TLR4). We sought to define novel aspects of the complex spatiotemporal dynamics of LPS-induced inflammation using computational modeling, with a special focus on the timing of pathological systemic spillover. An analysis of principal drivers of LPS-induced inflammation in the heart, gut, lung, liver, spleen, and kidney to assess organ-specific dynamics, as well as in the plasma (as an assessment of systemic spillover), was carried out using data on 20 protein-level inflammatory mediators measured over 0-48h in both C57BL/6 and TLR4-null mice. Using a suite of computational techniques, including a time-interval variant of Principal Component Analysis, we confirm key roles for cytokines such as tumor necrosis factor-α and interleukin-17A, define a temporal hierarchy of organ-localized inflammation, and infer the point at which organ-localized inflammation spills over systemically. Thus, by employing a systems biology approach, we obtain a novel perspective on the time- and organ-specific components in the propagation of acute systemic inflammation.


Santos-Pata, D., Zucca, R., Low, S. C., Verschure, P. F. M. J., (2017). Size matters: How scaling affects the interaction between grid and border cells Frontiers in Computational Neuroscience , 11, Article 65

Many hippocampal cell types are characterized by a progressive increase in scale along the dorsal-to-ventral axis, such as in the cases of head-direction, grid and place cells. Also located in the medial entorhinal cortex (MEC), border cells would be expected to benefit from such scale modulations. However, this phenomenon has not been experimentally observed. Grid cells in the MEC of mammals integrate velocity related signals to map the environment with characteristic hexagonal tessellation patterns. Due to the noisy nature of these input signals, path integration processes tend to accumulate errors as animals explore the environment, leading to a loss of grid-like activity. It has been suggested that border-to-grid cells' associations minimize the accumulated grid cells' error when rodents explore enclosures. Thus, the border-grid interaction for error minimization is a suitable scenario to study the effects of border cell scaling within the context of spatial representation. In this study, we computationally address the question of (i) border cells' scale from the perspective of their role in maintaining the regularity of grid cells' firing fields, as well as (ii) what are the underlying mechanisms of grid-border associations relative to the scales of both grid and border cells. Our results suggest that for optimal contribution to grid cells' error minimization, border cells should express smaller firing fields relative to those of the associated grid cells, which is consistent with the hypothesis of border cells functioning as spatial anchoring signals.

Keywords: Border cells, Error minimization, Grid cells, Navigation, Path integration