Staff member


Claudia Di Guglielmo

Laboratory Technician
Molecular Bionics
cdiguglielmo@ibecbarcelona.eu
+34 34 934034664
Staff member publications

Valls-Margarit, M., Iglesias-García, O., Di Guglielmo, C., Sarlabous, L., Tadevosyan, K., Paoli, R., Comelles, J., Blanco-Almazán, D., Jiménez-Delgado, S., Castillo-Fernández, O., Samitier, J., Jané, R., Martínez, E., Raya, Á., (2019). Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality Stem Cell Reports 13, (1), 207-220

In vitro surrogate models of human cardiac tissue hold great promise in disease modeling, cardiotoxicity testing, and future applications in regenerative medicine. However, the generation of engineered human cardiac constructs with tissue-like functionality is currently thwarted by difficulties in achieving efficient maturation at the cellular and/or tissular level. Here, we report on the design and implementation of a platform for the production of engineered cardiac macrotissues from human pluripotent stem cells (PSCs), which we term “CardioSlice.” PSC-derived cardiomyocytes, together with human fibroblasts, are seeded into large 3D porous scaffolds and cultured using a parallelized perfusion bioreactor with custom-made culture chambers. Continuous electrical stimulation for 2 weeks promotes cardiomyocyte alignment and synchronization, and the emergence of cardiac tissue-like properties. These include electrocardiogram-like signals that can be readily measured on the surface of CardioSlice constructs, and a response to proarrhythmic drugs that is predictive of their effect in human patients.

Keywords: Cardiac tissue engineering, CardioSlice, ECG-like signals, Electrical stimulation, Heart physiology, Human induced pluripotent stem cells, Perfusion bioreactor, Tissue-like properties


Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., Jiménez-Delgado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., Giralt, A., Canals, J. M., Memo, M., Alberch, J., López-Barneo, J., Vila, M., Cuervo, A. M., Tolosa, E., Consiglio, A., Raya, A., (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease EMBO Molecular Medicine , 4, (5), 380-395

Induced pluripotent stem cells (iPSC) offer an unprecedented opportunity to model human disease in relevant cell types, but it is unclear whether they could successfully model age-related diseases such as Parkinson's disease (PD). Here, we generated iPSC lines from seven patients with idiopathic PD (ID-PD), four patients with familial PD associated to the G2019S mutation in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene (LRRK2-PD) and four age- and sex-matched healthy individuals (Ctrl). Over long-time culture, dopaminergic neurons (DAn) differentiated from either ID-PD- or LRRK2-PD-iPSC showed morphological alterations, including reduced numbers of neurites and neurite arborization, as well as accumulation of autophagic vacuoles, which were not evident in DAn differentiated from Ctrl-iPSC. Further induction of autophagy and/or inhibition of lysosomal proteolysis greatly exacerbated the DAn morphological alterations, indicating autophagic compromise in DAn from ID-PD- and LRRK2-PD-iPSC, which we demonstrate occurs at the level of autophagosome clearance. Our study provides an iPSC-based in vitro model that captures the patients' genetic complexity and allows investigation of the pathogenesis of both sporadic and familial PD cases in a disease-relevant cell type.

Keywords: Autophagy, Disease modeling, LRRK2 mutation, Neurodegeneration, Pluripotent stem cells